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Abstract 
 

Mobile robots are more and more commonly used for everyday automated 

transportation and logistics tasks; they carry goods, parts and even people. When 

maneuvers in cluttered environments are executed with expensive loads the need for 

reliable, safe and efficient movement is paramount. This dissertation is written with the 

goal of solving some problems related to a special class of mobile transport robots. 

Omnidirectional wheels are well known in the robotics community, their exceptional 

maneuvering capabilities attract a lot of robot builders and several industrial 

applications are known as well. To fully exploit the advantages of these special wheels 

sophisticated mechanics and control methods are required. Since modern engineering 

uses simulation wherever possible, to eliminate design errors early in the development, 

the first objective of my research was to create an easy to use, yet realistic model in 

simulation for the general omnidirectional wheel. To create this model I used empirical 

tire models created for automotive simulation – to make advantage of the knowledge 

accumulated in this domain – and modified them to generate forces like an 

omnidirectional wheel, in essence transforming the longitudinal force component in the 

direction of the rollers. I created two embodiments as an example in Dymola 

environment and verified their functionality using kinematic equations and simple 

lumped robot models. 

Omnidirectional wheels have no side-force generating capabilities, this is the very 

attribute that allows them to generate holonomic movement. Due to this characteristic 

omnidirectional platforms do not keep their direction of movement when braked 

intensively, instead they tend to swerve around the most loaded wheel. My second goal 

was to try and eliminate the swerving effect when braking. The braking problem 

involves a nonlinear MIMO system with uncertain parameters, since for example the 

ground-wheel contact depends nonlinearly on the unknown wheel load, ground and 

wheel material characteristics. I created a sliding mode controller that takes wheel 

center velocity vectors as input and actuates the brakes according to the given wheels’ 

capability to reduce unwanted platform motion i.e. swerving. I also incorporated a 

factor to tune braking distance. I verified the performance of the controller in 

simulation, it showed high tolerance against structured and unstructured uncertainties in 

the platform model. The control law only uses knowledge on the kinematics of the 

robot, yet it works well with robots with dynamic properties. 

To be able to control an omnidirectional platform, feedback of the motion is essential. 

Due to the special movement, traditional, wheel rotation based methods are highly 

inaccurate; therefore I directed my research towards optical feedback, using an image 

detector facing the ground and correlation. The method itself is not new most people 

know it from optical mice. There are many similar solutions in the literature, but they 

are not suited to movements up to several tens of m/s. To enhance the range of the 

sensor I investigated the possibility of using line scan cameras. They offer high speed 

and resolution in a single dimension. To verify whether movements off the main axis 

make measurements impossible I created a simulator in Matlab and made several 

experiments with a virtual sensor. My results show that by careful choice of parameters 

and processing, a line scan camera can be made insensitive to off axis movements and 

high speed one dimensional measurement is possible while moving in two dimensions. 

The results of my research were evaluated in simulation and an early prototype of the 

speed sensor was incorporated in student projects. 

  



Kivonat 
 

Egyre inkább mindenapossá válik mobil robotok használata automatizált szállítási, 

logisztikai feladatokra. Szállítanak velük csomagokat, alkatrészeket, sőt embereket is. 

Amikor akadályokkal zsúfolt változó környezetben kell manőverezni, esetenként drága 

sérülékeny teherrel, fokozottan merül fel az igény megbízható, biztonságos, hatékony 

helyváltoztatásra. Ez a disszertáció azzal a céllal íródott, hogy megoldást adjon a mobil 

szállítórobotok egy speciális osztályának néhány problémájára. 

Az omnidirekcionális kerekek széles körben ismertek, kivételes manőverezési 

képességük sok robotépítőt vonz és számos ipari alkalmazásuk is ismert. Képességeik 

teljes kihasználásához kifinomult mechanikai és irányítástechnikai megoldások 

szükségesek. A modern mérnöki munkamenet bonyolult rendszerek tervezésekor minél 

több szimulációt von be, már a tervezési fázisban a költséges tévedések 

kiküszöbölésére. Ezért választottam egyik kutatási célomnak egy általános realisztikus 

omnidirekcionális szimulációs kerékmodell megalkotását. A modell megalkotásához 

meglévő, kipróbált empirikus járműtechnikai kerékmodelleket használtam fel és ezek 

erő-karaktrisztikáit módosítottam, hogy az omnidirekcionális kerekekéhez hasonló 

viselkedést mutassanak. Többfajta megvalósítást implementáltam Dymola 

környezetben, működésüket kinematikai egyenletek alapján, egyszerű dinamikus 

robotmodellekkel ellenőriztem. 

Az omnidirekcionális kerekek nem képesek oldalirányú erőket generálni, pontosan ez 

teszi lehetővé a holonom mozgást. Ez azt okozza viszont, hogy ha fékezünk egy ilyen 

kerekekkel ellátott platformot nem tartja meg eredeti mozgásának irányát, hanem 

hajlamos keresztbe fordulni a legjobban terhelt kerék körül. Második kutatási célom az 

volt, hogy megakadályozzam a fékezéskor jelentkező keresztbefordulást. A fékezési 

probléma egy nemlineáris, paramétereiben bizonytalan MIMO rendszerre vezethető 

vissza, ugyanis például a kerék-talaj kapcsolat nemlineárisan függ az ismeretlen 

kerékterheléstől és a bizonytalan talaj és kerék anyag paraméterektől. Csúszó módú 

szabályzót készítettem amely a kerekek középpontjának sebességét használja 

bemenetként és az egyes kerekeket attól függően fékezi, hogy azok az adott pillanatban 

képesek-e a nemkívánt – keresztbe fordító – sebesség komponenseket csökkenteni. A 

szabályzó lehetőséget biztosít a féktáv befolyásolására is. A szabályzó elvárt működését 

szimulációval ellenőriztem, nagyfokú érzéketlenséget mutatott a platform modell 

struktúrált és struktúrálatlan bizonytalanságaival és a visszacsatolás zajával szemben. A 

szabályzó kizárólag a kinematikai modell ismeretében is képes volt változó dinamikus 

paraméterekkel rendelkező platformok irányítására. 

Az irányításhoz elengedhetetlen a megfelelő visszacsatolás megléte. A speciális mozgás 

miatt a hagyományos, kerék-elforduláson alapuló visszacsatolás pontatlan, ezért 

kutatásom az optikai rendszerek felé irányult. A talaj felé néző detektor és korreláció 

alkalmazásának ötlete nem új, az optikai egérből mindenkinek ismerős lehet. Az 

irodalom számos hasonló megoldásra hoz példát, azonban ezek egyike sem alkalmas 

nagysebbeségű – több tíz m/s – mérés elvégzésére. A technika mérési tartományának 

bővítésére vonalkamerát javasoltam, mivel egy dimenzióban nagy felbontást és 

képfrekvenciát biztosít. Annak vizsgálatára, hogy a tengelyiránytól eltérő mozgások 

lehetetlenné teszik-e az egydimenziós mérést Matlab szimulációt alkalmaztam és 

számos szimulációs kísérletet végeztem. Az eredményeim azt mutatják, hogy megfelelő 

paraméterválasztással és feldolgozással a vonalkamerán alapuló szenzor érzéketlenné 

tehető a tengelyiránytól eltérő mozgásokra és nagysebességű egydimenziós mérés 

végezhető kétdimenziós mozgás esetén is.  
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1 Introduction 

This dissertation is written with the aim of solving some of the problems of advanced 

logistics robots, namely omnidirectional transport vehicles. Although the invention of 

the special wheels that move them dates back to the seventies, advances in 

mechatronics, and control technology keep them constantly on the drawing table of 

engineers working with mobile robots. This family of vehicles has serious advantages in 

mobility compared to traditional, wheeled propulsion systems, however their more 

complicated design and control, and the lower quantity of scientific background 

research and general understanding makes them a less attractive choice, even for 

applications perfectly suited for them. I tried to lessen this obstacle by solving some 

related problems. 

Omnidirectional wheels are constructed so that a vehicle equipped with them can 

execute true holonomic movements, in other words it can change its direction of 

movement without changing its orientation. Their great movement capabilities however 

mean that their mechanical construction is complicated, they also require independent 

drive and control systems for each wheel. The rolling efficiency of these wheels is 

worse than that of regular wheels, also they generally do not perform very well on 

rough surfaces, i.e. they are best suited for indoors applications. 

1.1 Omnidirectional wheels in simulation 

During my research I created a vehicle model for simulation purposes, in an industry 

standard simulation language that can be adapted and used for a wide range of 

omnidirectional platforms. Probably the most important part of a vehicle model is the 

wheel, since this is the part that makes contact with the ground and transfers forces and 

torques to move the vehicle. In the last few decades a great number of wheel models of 

different levels of complexity have been constructed, and are used regularly in 

automotive and heavy truck simulations. This wealth of knowledge on wheel modeling 

however has not been applied to other areas of vehicle simulation, such as mobile 

robotics, although there are a lot of common features between the two. I created a 

configurable omnidirectional wheel model that can be adapted to work with most of the 

popular empirical wheel models used in vehicle simulation today. With the help of this 

simulation I created configurable omnidirectional platform models and made various 

experiments with the most widely used configurations, the four wheeled Mecanum 

platform and the three wheeled omnidirectional platform, sometimes referred to as the 

kiwi drive platform. 

1.2 Problems during braking 

Due to their design omnidirectional wheels in general have a quasi one dimensional 

force generation capability, they can only exert substantial force parallel to the roller 

axes, this is the very attribute that allows omnidirectional movement. As a consequence 

a platform can be pushed in any direction when the wheels are rolling free. The main 

problem however is that they tend not to keep their orientation during braking. This is 

caused by slight differences between wheel forces due to uneven load distribution, or 

ground friction variations. These unbalanced forces create a resulting torque and thus an 

angular acceleration around the center of gravity during braking. I identified and solved 

the underlying control problem and created a nonlinear controller that makes braking of 
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omnidirectional platforms more predictable and safe. My brake assist controller uses 

sliding mode control to maintain directional control of the platform during emergency 

braking. The control law only uses kinematics information of the platform, the relative 

position of the wheels and the direction of their axes and rollers. This means that the 

controller has a high tolerance regarding changes in the dynamic model i.e. load 

distribution and ground contact characteristics. Also it works with any kind of 

omnidirectional wheel. I demonstrated the disturbance rejection of the brake assist 

controller with several examples in simulation, on the two most widely used 

omnidirectional platforms. 

1.3 Velocity feedback 

Many mobile robots operate with large amounts of wheel slip, some of them have an 

uncertain center of rotation, some have no wheels, making traditional – wheel rotation 

based – dead-reckoning methods highly inaccurate. To deal with this problem I 

proposed a new optical speed measurement system that produces accurate two 

dimensional velocity measurements up to a very high speed, independent from wheel 

rotations, and platform kinematics. The method in itself is not new, it is similar to the 

working principle of a common optical mouse: snapshots of the ground are taken with a 

certain frequency and consecutive images are compared. The displacement of texture 

patterns and the snapshot frequency gives the speed of movement. My approach is new 

in the sense that I did not use a matrix camera but a line detector and showed that 

accurate one dimensional measurements can be made while moving in two dimensions. 

These devices feature line frequencies at the order of kHz at a very reasonable price. 

This enables speed measurement in the practical velocity range of most ground vehicles.  

Putting three of these line camera based sensors on a platform, movement along a 

surface can be measured in three degrees of freedom, independent from platform 

kinematics. This property makes the system useful for example for the class of 

holonomic mobile robots, independent from propulsion. 

1.4 Methods and tools 

Most of the work has been carried out in Modelica – Dymola and Matlab simulation 

environments. 

Modelica is a free object-oriented modeling language with a textual definition to 

describe physical systems in a convenient way, by differential, algebraic and discrete 

equations. It is supported by the Modelica Association
1
. “It is suited for multi-domain 

modeling, for example, mechatronic models in robotics, automotive and aerospace 

applications involving mechanical, electrical, hydraulic and control subsystems, process 

oriented applications and generation, and distribution of electric power. Modelica is 

designed such that it can be utilized in a similar way as an engineer builds a real system: 

First trying to find standard components like motors, pumps and valves from 

manufacturers' catalogues with appropriate specifications and interfaces and only if 

there does not exist a particular subsystem, a component model would be newly 

constructed based on standardized interfaces. 

Models in Modelica are mathematically described by differential, algebraic and discrete 

equations. No particular variable needs to be solved for manually. A Modelica tool will 

have enough information to decide that automatically. Modelica is designed such that 

                                                 
1
 https://modelica.org (Accessed 2012. Feb.). 
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available, specialized algorithms can be utilized to enable efficient handling of large 

models having more than hundred thousand equations. Modelica is suited (and used) for 

hardware-in-the-loop simulations and for embedded control systems.”[38] From my 

point of view the main attractiveness lies in the languages’ object oriented nature, which 

allows a convenient incremental development workflow. Another attractive feature is 

the model building philosophy of describing the systems by algebraic differential 

equations, thus approaching the problem from a physics point of view, as opposed to a 

mathematical one, which – in my experience – is less appealing to an engineer. 

Matlab is a widely known computational software package, with a broad range of 

mathematical toolboxes in almost every domain of science and engineering. It is 

generally used for verifying and prototyping algorithms, but it can also be used for 

simulation and even real time computation. I used it to create the simulator for the speed 

sensor (section 4.4.) with the help of T. Takács, an MSc. student at the time. Leveraging 

the built in image manipulation, distance metric, and plotting functions I could 

concentrate on the sensor related problems. Because of this Matlab proved to be an 

excellent choice for the task. 
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2 Omnidirectional wheel simulation 

2.1 Motivation 

Omnidirectional wheels have been invented quite a long time ago [24] and they have a 

rich history in the literature. They have been used for various tasks and many different 

embodiments are known [41], [9]. Their use ranges from robotic soccer applications, 

through industrial heavy load transporters [43], and vehicle simulators [1], to 

educational and entertainment projects like the popular inverted pendulum, but mounted 

on a ball [30], [5]. Figure 1. shows some of these applications. 

 

Figure 1. Examples for the use of omnidirectional wheels
2
  

Modern engineering uses simulation for almost every task imaginable, to cut costs, 

speed up development and minimize changes late in the product life cycle. 

Omnidirectional platforms are no exception since they require more complex 

mechanical design and control, than traditional vehicles. 

As I found no publicly available simulation libraries for Mecanum wheels I decided to 

create one myself. The rollers are often covered with rubber, especially in heavy duty 

applications; this means the rollers themselves behave much like a small tire with a 

solid carcass. The behavior of rubber under dynamic conditions is not trivial to describe, 

tire research is a science in itself with around 80 years of history [19]. I decided to build 

on the work of others and lay down the foundations of how to modify existing tire 

models to simulate omnidirectional wheels.  

                                                 
2
 [30], www.airtrax.com, www.kuka-omnimove.com, [1], [49] 
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2.2 Omnidirectional wheel models 

This section gives a short overview on the types of omnidirectional wheels and their 

simulation from the literature. A great number of omnidirectional wheel users are 

industrial companies and users of their product, the most significant being KUKA 

Robotics
3
, and Airtrax. The second group of people who use them are students, 

preparing for robotics competitions such as RoboCup and others, or scientists working 

on advanced mobility concepts. This second group creates the majority of publications. 

 

Figure 2. Different omnidirectional wheels and mobility concepts 

a) Airtrax Mecanum wheel b) enhanced profile omni-wheel [10] c) multiple row wheel
4
      

d) Killough wheel
5
 e) wheel of a Honda U3-X personal mobility platform f) Ballbot, 

omnidirectional balancing robot [31] 

Figure 2. shows a cross section of some of the wheel designs and interesting mobility 

concepts. I collected them to demonstrate relevant concepts trough examples. 

Subfigures a), b) and c) represent the most popular wheel configurations i.e. passive 

rollers on the perimeter of a wheel. a) shows the Mecanum wheel used on the Airtrax 

forklift. It is worth noting that the rollers are shaped in an attempt to attain a round 

profile and a single roller touching the ground at a time. One of the problems associated 

with omni-wheels is the rough ride associated with changes in wheel radius when 

changing roller contact. Another important effect is caused by the rigid discontinuities 

between rollers, they cause slip especially on soft surfaces, such as a carpet [55]. b) and 

c) are examples of the most widely used solutions to these problems. b) uses different 

sized rollers, where the larger diameter rollers are shaped so that they can fit the smaller 

rollers inside, thus virtually eliminating the non-rolling surface on the circumference 

[10]. This obviously comes at the price of increased complexity. c) is a more common 

solution, by using multiple regular wheels mounted side by side at an angle, 

“bumpiness” and roller discontinuities can be minimized. 

                                                 
3
 http://youbot-store.com/, http://www.kuka-omnimove.com 

4
 http://www.vexrobotics.com 

5
 http://www.h33.dk/opfhjul_index.en.html 

a) b) c) 

d) e) f) 
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The remaining three subfigures show somewhat different mobility concepts. d) shows 

the so-called Killough wheel, named after the inventor [41]. In this concept two quasi 

ball-shaped rollers are mounted in rigid brackets that are connected perpendicular to 

each other. The rollers are free to roll and the bracket assembly is driven by a motor. 

These wheels should be mounted and applied just like the omni-wheels above. 

(Kinematic constraints are explained in section 2.5.1.) Smooth ride and single roller 

contact is ensured by the shape of the rollers, the contact point however moves 

significantly when roller contact changes. 

Subfigure e) shows the wheel of Honda U3-X
6
 personal mobility platform. A seat is 

mounted on top of the wheel and the vehicle balances and drives on this single wheel in 

an omnidirectional fashion. This is achieved by having powered rollers in addition to 

the main drive that turns the entire wheel.  

f) shows an omnidirectional platform that clearly eliminates any rolling imperfections 

by using a ball to ride on. It is called Ballbot and it was designed to work in areas used 

by people [31]. It is high enough to make eye contact yet it has a small footprint, that 

together with omnidirectional maneuverability enables it to get around in cluttered 

indoor environments. 

In this dissertation I worked with the type of wheels represented by the first three 

subfigures. A common characteristic is that they have a relatively small width relative to 

their diameter and they are designed with an attempt to ensure smooth ride. In the 

following let us take a look at how this type of wheels has been modeled by other 

researchers. 

Williams et al. [55] developed a wheel model motivated by the RoboCup competition. 

They used a small three wheeled platform with    rollers (Figure 3. a). The wheels they 

used had a single row of rollers, without any provisions to smoothen roller 

discontinuities, this was reflected in their results, the wheels demonstrated a strong 

angle dependent friction characteristics directly related to the non-rolling part touching 

the carpet they used for testing. It is also important to note that they found that the 

friction coefficient in the driven and in the free rolling direction was comparable – 3/1 

and 5/3 respectively for paper and carpet – showing that the quality of the omni-wheel 

greatly effects the behavior of the mobile platform. 

 

Figure 3. a) Omnidirectional RoboCup player by Williams et al. [55],  b) youBot by KUKA 

Robotics, flexible arm on a mobile base 

Dresscher et al. [16] incrementally developed a model for youBot (Figure 3. b) using an 

energy based method and its bond graph representation. Their goal is to model this 

                                                 
6
 http://www.hondanews.com 

a) b) 
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rather complicated platform in a modular, reusable fashion, this also includes modeling 

of the Mecanum wheels. To make the model simpler they neglected dynamic behavior 

of the wheels and derived a kinematical model from the geometry. They neglected 

friction in the roller bearings and generally neglected force in the free rolling direction. 

They defined a transformation between drive axis movement and wheel movement in 

the direction parallel to the roller axis. Floor contact was modeled with a resistance and 

a stiffness parameter. The authors had no opportunity to validate their model on the real 

platform. 

Tobolár et al. [51] created an object oriented library for Mecanum wheels in Modelica, 

unfortunately their article is very short and non-informative. As I learned from the 

author this is due to an NDA with KUKA Robotics. 

Studying the literature the conclusion can be drawn, that in many cases omnidirectional 

platforms are modeled as a whole, assuming symmetrical load distribution, without 

having separate wheel models. However when wheels are modeled, dynamic effects are 

often neglected and the results are purely kinematical. This is probably justified when 

the platform has very low, known weight, for example a RoboCup player. Another 

common modeling approach is that wheel forces are assumed to be generated parallel to 

the direction of the rollers and forces perpendicular to the roller axis are assumed to be 

zero. An exception is the paper mentioned before [55], where the authors had to 

calculate with substantial forces in the free rolling direction, however in my opinion this 

was due to the disadvantageous characteristics of the omni-wheel they used. 

To be able to apply a wheel model that accommodates a broad range of robotic 

platforms including heavy machines with uneven load distribution and various wheel 

designs with different roller materials, a model is needed that is easy to parameterize,  

includes simple dynamics, handles sliding and last but not least of all, well suited for 

simulation. For this I decided to build on the well proven results from the domain of 

regular tire modeling, while applying some of the techniques used in the literature cited 

above. 

2.3 Regular tire models in simulation 

Tire modeling in general has been an active area of research for a long time, because the 

behavior of a tire is a complex phenomenon, and the results can be used in countless 

applications, making it both a challenging and lucrative area of research. The main 

purpose of a tire, besides providing a smooth ride for the passengers is to transmit 

forces and torques in three mutually perpendicular directions to create vehicle 

movement and directional control. To achieve this, a tire model has to handle collision, 

calculate the contact patch with the ground and obstacles, and it has to generate the 

forces and torques that arise. Most of these calculations are nonlinear because of the 

characteristics of the tire material [8]. 

The complexity of a tire model depends on the application, more precisely the detail 

needed in the simulation output. The simplest models regard the tire as a rigid disk, with 

unchangeable radius and linear dynamic properties, the most complicated ones use finite 

element simulation, fine tuned to a certain rubber compound and carcass. For a tire 

model to be useful, a compromise between complexity and accuracy has to be found 

depending on the application at hand. A very good example of incremental model 

building in Modelica is given by [57]. 

Except for simple targeted experiments the model cannot be restricted to a certain 

driving situation. Most of the relevant cases have to be considered, such as driving with 

nonzero camber and sideslip angles. Another important aspect is the adaptability of tire 
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model characteristic parameters to real world tire behavior. A substantial number of tire 

models fall into the category of empirical models. These are based on measurements 

with real tires. Polynomial functions are fitted to the measured data points, and then the 

tire can be characterized by the coefficients of these polynomials. Figure 4 shows an 

example, the horizontal axis represents slip, the vertical axis is longitudinal friction 

force (in the direction of rolling). Slip is usually defined in relation to the difference 

between a wheel center’s velocity and its circumferential velocity (see details in the 

next section). It is often confused with sliding, but it is important to see that slip occurs 

with a perfectly gripping tire as well. It can be thought of as the driven axis twisting the 

elastic tire material around itself. 

 

Figure 4. Longitudinal friction force generation vs. slip (after [21]) 

It is clear from the figure, that force is represented according to different polynomials 

depending on the slip value. A good example of empirical modeling is the well-known 

Pacejka and Rill tire models [39], [42]. This modeling approach implies that many of 

the model parameters have no explicit physical meaning, they only represent the 

coefficients of certain polynomials. This makes the use of these models complicated, 

one has to have real measurements of real tires to obtain useful parameters. 

This is the reason why I decided choose a model for my initial experiments that was 

created to avoid this problem, with ease of use as a main modeling approach. The model 

is described in the next section (2.3.1). One can read about in detail in [21],[42], here I 

will only highlight some pieces of information that are needed for understanding the 

following sections. 

2.3.1 The Rill tire model 

TMEasy [21] is very user friendly and easy to use, which makes it a popular modeling 

choice. In order to be easy to use it takes the insufficiencies of the availability of 

reliable modeling data into account. It achieves this goal by using a rather limited 

number of parameters, with a more or less direct physical meaning. This makes it 

possible to make incomplete tire datasets complete by identification or educated guess. 

The force generation of the tire material is due to elastic deformation, this can be best 

described by wheel slip. In the direction of rolling ( ) slip is defined by the difference 

of a wheels circumferential velocity and the velocity of its center, divided by the 

wheel’s circumferential velocity. Slip in the direction parallel with the wheel axis ( ) is 

defined differently, for this the lateral velocity of the wheel center is divided by the 

wheel’s circumferential velocity. This is described by the following equations, from 

[21]: 

    
(      )

  | |
 and     

  

  | |
 (1), (2) 
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where       are components of the contact point velocity in lateral and longitudinal 

direction, respectively.   is the angular velocity of the wheel and    is the dynamic 

rolling radius. They can be vectorially added to obtain a generalized slip value. 

The dynamic rolling radius is introduced to accommodate tire deformation due to 

vertical load. In this model the difference relative to the non-deformed state is 

calculated from the wheel load and a vertical stiffness constant [42]. 

Table 1. shows some parameter values for a typical tire. The combined force 

characteristics are directly generated via a generalized slip approach which does not 

need any additional fitting parameters.  

 

Description Name       Name       

Nominal normal force        3000N        6000N 

Slope at             50000N        75000N 

Slip of maximum tire force          0.15          0.18 

Maximal tire force          3000N          4500N 

Slip where sliding begins            0.4            0.5 

Force where sliding begins            2800N            4200N 

Slope at             40000N        60000N 

Slip of maximum tire force          0.21          0.24 

Maximal tire force          2750N          4125N 

Slip where sliding begins            0.6            0.8 

Force where sliding begins            2500N            3750N 

Table 1. Example parameters for a tire according to the Rill tire model 

These values describe the static characteristic slip – force curves of the tire for a given 

value of road friction coefficient. Since the force is load dependent, different force 

curves describe the force generation of differently loaded wheels. An example is shown 

on Figure 5. The vertical forces     increase in magnitude with the index  . In Table 1. 

two nominal load values are shown       is the nominal load,       is the maximal 

permissible load. 

 

Figure 5. Load dependence of horizontal force 
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For values between the two nominal values a nonlinear second order interpolation is 

used. The quadratic interpolation for            for any value is demonstrated trough 

the example of      , the initial slope of the force – slip curve: 

      [(
     

      

      
   

     
      

      
) (

            

             
)

 
          

      
]

     

      
 

(3) 

All parameters are interpolated similarly.  

 

Figure 6. Quadratic interpolation of     gradient for a given slip value 

This interpolation implies that for most values there are two solutions (inverted parabola 

see Figure 6.), one of them is physically correct the other is invalid, meaning for 

example a tire overloaded outside the boundaries of the model. Figure 6. shows the 

interpolation curve for the slope at      i.e. the steepness of the initial, linear part of 

the curve.  

The physical meaning of the quadratic interpolation in this case is, that with more load 

the tire does not get proportionally more force capability, but rather compresses and 

loses some traction. The values above the maximum nominal load have no physical 

meaning, this shows the boundaries of the model. During simulation one has to be 

careful not to overload the wheel and get invalid results. 

The model uses first order dynamics. According to [21] the dynamic reaction of the tire 

forces and torques to disturbances can be approximated quite well by first order 

systems. Thus the dynamic behavior is modeled by a simple spring and damper model 

as illustrated on Figure 7. 
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Figure 7. Tire deflection, first order tire dynamics 

The dynamic force is generated from the elastic deformation    of the tire material: 

                ̇  (4) 

These values may also be set intuitively, to make the wheel stiff or more compliant. 

2.3.2 Contact calculation 

Simple contact model of a regular tire: Forces and torques are transmitted between 

the ground and the tire at the contact point, the effect of contact forces can be fully 

described by resulting force and torque vectors at a specific point of the contact patch. 

The uneven ground can be described by a function of two spatial coordinates   
 (   ) and it is approximated by a local road plane. This local plane is characterized by 

its unit normal   . 

 

Figure 8. Contact model [21] 

This normal can be computed, for example by taking four points in the ground function 

at a short distance forward, backward, left and right from the ground projection of the 

wheel centre,            . The vectors pointing between them are indexed by the 

corresponding point indexes e.g.     points from    to   . Then: 

   
       

|       |
 (5) 
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this local linearization smoothes out local discontinuities and sharp bends from the 

surface, that occur in reality [21]. 

The wheel center plane is defined by the unit vector in the direction of the wheel 

rotation axis    .    lies in the intersection of the local road plane and the wheel center 

plane and defines the direction of longitudinal force. The lateral force is described by 

the unit vector   which is perpendicular to both the track normal    and   . The camber 

angle         (   
   ) describes the inclination of the wheel in respect to the local 

road plane and defines the direction of    . The geometrical contact point   lies in the 

intersection of the local road plane and the wheel center point   and it is the point to 

the shortest distance to it. Its location is described by: 

            (6) 

where     describes the wheel center position in global coordinates and the vector from 

the center   to the geometric contact point   can be written as:            , where 

   is the static tire radius and            is the radial direction. 

For a cambered tire, due to tire deformation effects it is usually more accurate to 

calculate the position of the so called static contact point, which estimates the point with 

higher pressure, the sideways deviation can be calculated from camber angle  , tire 

width  , and tire deflection   : 

    
  

    

   ( )

   ( )
 (7) 

Kinematics of an omnidirectional wheel: Since the surface of omnidirectional wheels 

are more complex, than that of regular wheels because of the rollers, their contact model 

deserves a bit more investigation. For this derivation it is assumed that the wheel axis is 

parallel to the ground i.e. camber angle is zero (   ). Gfrerrer [18] developed a 

geometrical model for the construction and kinematical investigation of Mecanum 

wheels. This section is mainly based on this article. 

 

Figure 9. Kinematical representation of a general omni-wheel  

When a Mecanum wheel rolls the contact point moves along the surface of a roller, 

Figure 9. shows the geometrical representation. It depicts a certain moment of a rolling 

Mecanum wheel, looking at a cut-out portion of a vehicle from above. In this situation 
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four systems are involved: the ground, the vehicle, the wheel and the roller, which at the 

certain moment touches the ground at point  . This point is always under axis   of the 

wheel, it is at the projection of its intersection with the roller axis   to the ground. From 

this follows that   only lies exactly below   when axis   is horizontal. Let    denote 

the center of the vehicle, then its coordinate system    is described by {           } 

unit vectors, the axes   and   being parallel to the ground. In this case the direction 

vector of the axis  :  

  (         )   (      )  (8) 

The direction vector of the axis  , the roller axis depends on the rotation angle   of the 

wheel: 

  (
                     
                     

        
)  (

  

  

  

) (9) 

In    the   and   coordinates of the contact point are the following: 

 
                   
                   

} (10) 

To calculate the connection between the motion of the vehicle and the rotation of the 

wheel, first the components of the movement need to be calculated. Since a flat ground 

and parallel movement is assumed, for these equations the   coordinate of the velocity 

vectors can be omitted, for the sake of clarity. The motion of the contact point with 

respect to the vehicle/ground movement can be written the following way: 

      (
      

      
) (11) 

where    
 (     )  is the velocity vector of the vehicle and   is its angular velocity. 

The motion between the wheel and the vehicle is a rotation around axis  , the velocity 

vector of   for this motion is: 

        ̇ (
     
        

) (12) 

where  ̇ is the angular velocity of the wheel. 

The motion between the wheel and the roller is again a rotation, around axis  , therefore 

it is perpendicular to the axis. It is of the form: 

       (
   

  
)  (13) 

  being a multiplier constant. 
The motion of   with respect to the roller/ground movement is zero, if rolling without 

slippage is assumed. By adding the previously described motions we can obtain this 

velocity i.e. zero: 

                        (
 
 
) (14) 

Substituting (11), (12), (13), yields: 

      ̇            

         ̇             
} (15) 
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where   stands for wheel radius. Eliminating   yields the differential equation 

connecting the vehicle motion and wheel rotation: 

 (             ) ̇    (      )    (      )    (16) 

The factors             are functions of   according to equations (9) and (10), also 

   ( ). As it can be seen from the equations, the situation is quite complex, while a 

certain roller is in contact with the ground the contact point moves from one side of the 

wheel to the other as the wheel turns. When   reaches the wheel edge, then the next 

roller comes into contact with the ground – and   jumps back to the other edge, this 

implies that  ( )  ( ) are functions with jump discontinuities at the change of the 

rollers. In reality the situation gets more complicated because many wheels are created 

with roller overlap, to avoid gaps between rollers, thus having multiple contact points. 

In practice if we can guarantee that there is a contact point at all instants, contact point 

fluctuation has a negligible effect even more so when the amplitude of the fluctuation, 

i.e. the wheel width is significantly smaller than other dimensions of the vehicle, such as 

wheel span. 

2.4 Omnidirectional wheel model in simulation – a practice oriented 
approach 

As I explained in section 2.1, I decided to use readymade components, to create the 

omnidirectional wheel simulation. The Rill model described in section 2.3.1 is available 

in the academic bundle of Dymola 7.4. In order to create an omnidirectional wheel two 

straightforward approaches are possible: 

- Put together an omni-wheel wheel from several individual wheels as rollers 

- Modify an existing wheel model to behave like a Mecanum wheel 

2.4.1 Individual rollers 

The most straightforward method to create a usable Mecanum wheel model: 

- take any tire model from the library to create a roller from the base model 

- set estimated (or measured) wheel parameters and geometry 

- set a certain number of rollers and arrange them according to the wheel 

geometry (set roller angle etc.) 

- allow the rollers to spin freely along their main axis and connect them to a main 

axle, that can be driven by an external torque. 

This is illustrated on Figure 10., for the case of the Mecanum wheel – 45  rollers – 

where the red cylinder in the center is the wheel hub, and the free rolling rollers are the 

blue cylinders around its circumference. Their axes are rotated at a 45° angle and the 

vectors pointing to the roller centers can be calculated by: 

     {   (
   

 
)       (

   

 
)} (17) 

where          and    is the radius of the wheel without the rollers. 
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Figure 10. Mecanum wheel animated in Dymola 

This approach is a clear adaptation of the mechanics of the wheel, and it does work 

fairly well in simulation: 

- Straightforward implementation. 

- Very easy to switch between different tire models. 

- Implicitly handles roller inertia, and rolling resistance. 

- The model incorporates discontinuities between rollers similar to a real wheel. 

- If simulation time is not an issue, adding more rollers and/or a better contact 

geometry model could make it more realistic. 

It also suffers from several disadvantages. 

- Far from suitable for real time simulation. Complicated model - for a typical 

four wheeled six roller vehicle, collision detection and force calculation has to 

be carried out for 24 rollers. 

- Relies on boundaries of original wheel model. The individual rollers operate at 

extreme situations: up to     sideslip and camber angles. The tire model can 

handle this, but it was not designed for it – loss of accuracy. 

- Crude contact model, most Mecanum wheel rollers are not a simple cylinder. In 

order to make them ride smoother, they have a varying cross section and 

rounded edges. A better geometry model would add complexity (see first 

disadvantage). 

In conclusion if I try to amend these problems I violate the principle of my original goal 

of creating a simple yet realistic wheel model, using available components. This 

approach would need a new contact model and a new roller design, from the start. 

2.4.2 Single roller omni-wheel model 

To overcome some of the disadvantages of the model presented in section 2.4.1, I 

created another one, based on a different approach. The main idea is to alter the force 

generation method of a single tire to behave like an omnidirectional wheel.  

For a real omnidirectional wheel the number of rollers touching the ground varies 

between one and two, also the position of the contact point changes depending on the 

angular position of the wheel and the angle of the rollers, creating an angle dependent 

effect on the wheel behavior. (see section 2.3.2) However, in this model I assume that 

the force generation is continuous along the perimeter of the wheel, much like an 

extrapolation of the ideal case when the center of only a single roller touches the 

ground. This is reasonable as the rollers are usually shaped in an attempt to achieve this 

effect. 
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Figure 11. Basic idea of the force transformation for omni-wheels 

To describe the modifications let us introduce the notation system used in the Rill 

model and the Modelica model for a regular wheel. They use the C (carrier) and W 

(wheel) coordinate systems according to the TYDEX [52] notations. (see Figure 12.) 

  

Figure 12. Tydex reference notations C – left  W – right [52] 

"The C-axis system is fixed to the wheel carrier with the longitudinal xc-axis parallel to 

the road and in the wheel plane (xc-zc-plane). The origin of the C-axis system is the 

wheel center. The origin of the W-axis system is the road contact-point defined by the 

intersection of the wheel plane, the plane through the wheel carrier, and the road tangent 

plane"
7
. 

The unit vectors             and              point in the direction of the C and 

W system axes. To accommodate the omni-wheel, I defined a      unit vector in the 

direction of the rollers' axis that is the direction it can exert force – I call it active 

direction. To be consistent with the notations of section 2.5.1.  I included the names of 

matching vectors on Figure 13. 

              (18) 

where      is a 3x3 rotation matrix of  . 

                                                 
7
 http://ti.mb.fh-osnabrueck.de/adamshelp/. web. (accessed May 2012.) 
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Figure 13. Definition of roller vectors x is forward, y is sideways, z points "out of the paper" 

To the direction of     – the free rolling or passive direction – the forces arising are 

due to bearing friction, rolling resistance and moment of inertia. From a practical point 

of view these forces do not amount to much and they can generally be neglected without 

loss of accuracy. However for the sake of completeness I include some information on 

them from the literature. 

Rolling resistance is usually modeled similar to the coefficient of friction, as a 

dimensionless factor. According to [19] studies on the rolling loss characteristics of 

solid rubber tires led to an equation of the form: 

   
  

 
  

 

 
√

  

 
 (19) 

where: 

   = rolling resistance force 

  = wheel load 

  = coefficient representing tire elastic characteristics 

  = tire diameter 

   = tire section height 

  = tire section width 

From this it is clear that rolling resistance has a linear load sensitivity. Large diameter 

tires decrease rolling resistance, also do low aspect ratios (    ). Rolling resistance in 

the most simple case can be approximated by a constant for passenger car tires on 

concrete a good value is around 0.015. At slow speeds it behaves linearly, however on 

broader ranges it seems more like a speed squared relationship [19]. 

Bearing friction is essentially the same thing as rolling resistance however its 

coefficient is usually an order of magnitude smaller, than that of rubber tires, as 

hardened steel surfaces rolling in grease typically have very little resistance. 

Moment of inertia of a solid cylinder rotating along its axis can be calculated by: 

  
   

 
. This affects the torque needed to accelerate the roller to a certain angular 

velocity, creating an opposing force when the wheel accelerates in the passive direction. 

The rollers in general are typically lightweight and small diameter compared to the 

wheel itself, so again this effect may be neglected. 

Having made this simplifying assumption we can make a further step by defining slip 

for the omnidirectional wheel. In most wheel models forces are generated as a function 

of slip, so this is an important aspect. Slip is defined separately for the x and y 
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directions. Since our idealized roller only generates force in the direction of its spin axis 

(    ) we shall only calculate slip in this direction.  [42] defines slip as "total slip": 

  
 

 | |      
  (20) 

where 

  √  
    

  (21) 

  is the wheel radius,   is the angular velocity, and      is a small number inserted for 

numerical reasons, to avoid division by zero. In my model I modify   in the slip 

equation: 

      √   
  (22) 

where     is the projection of the velocity of the center of the wheel in the      

direction. 

After redefining the slip equation, all is left to do is equate static and dynamic force 

equations with zero in the y direction and calculate force in the x direction according to 

the Rill model using the modified slip equation. The direction of this force has to be set 

to the direction of     . At this point the effects of camber, rolling resistance and bore 

torque were not investigated. 

This modeling approach greatly decreases computation time, because ground contact 

only needs to be calculated once per wheel. The modification is quite simple, so other 

wheel models could be modified if needed. If more accuracy is required roller inertia 

and rolling resistance could be incorporated in the model. The roller discontinuities 

might be modeled by modulating tire forces by an angle dependent function, similar to 

the one described in section 2.3.2. For my research these details were not necessary so I 

decided not to implement them at this point. 

Due to two orders of magnitude increase in simulation speed I decided to use this model 

instead of the one described in section 2.4.1. 

2.4.3 Scope of the models 

The two modeling approaches presented above are easy to adapt to different 

omnidirectional wheel embodiments. The multi wheel model from section 2.4.1 might 

be used for various kinds of omnidirectional wheels, since the mechanics and 

dimensions can be readily adapted to the wheel in question. However the limitations 

mentioned in the corresponding section have to be observed. 

The second modeling approach (section 2.4.2) is useful for the most commonly used 

wheels, where rollers are mounted on the circumference of the wheel, universal and 

Mecanum wheels. Due to the simplifications I made, the model is best used for wheels 

where the rollers are densely mounted and shaped to achieve a smooth rolling motion, 

and where the wheel is relatively thin, so that the contact point does not vary 

significantly when roller contact is changed. These qualitative guidelines have to be 

considered on an individual basis for each modeling task. 
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2.5 Forklift model 

2.5.1 Omnidirectional platform kinematics 

I decided to use simulation to verify the wheel model as it gave me great flexibility for 

experimenting. For this the kinematics of the platform needs to be known. In this 

section I describe the kinematics of omni-wheel platforms in a generalized manner. The 

most widely used basic configurations such as the three wheeled platform with 0° 

rollers (kiwi drive) and the four wheeled platform with 45° rollers (Mecanum drive) are 

easily derived from the general equations. This discussion builds largely on the work of 

Indiveri [25] notations however were changed for the sake of consistency. Figure 14. 

introduces the notations; for clarity a general three wheeled platform was considered. x 

and y of the local coordinate system lie in the ground plane z points out of the plane 

forming a right hand coordinate system. 

 

Figure 14. Notations of a general omnidirectional platform 

All axes are considered parallel to the ground except for   of the local coordinate 

system and  , the unit ground normal. Let N stand for the number of wheels, then the 

wheels are indexed from 1 to N with the index i.    denotes the position vector of the 

center of the wheel contact on the ground. The rollers touching the ground are 

illustrated by the shaded ellipses. The unit vector     is parallel with the roller axis, that 

is the active direction of the roller.            is the tangent velocity direction of 

the roller – that is the passive direction – associated with the rotation around    . All 

wheels are assumed to be identical with the same radius       is the unit vector along 

the wheels axis of rotation,         is the tangent velocity direction of the wheel, as 

it is rotating around   . Lets denote the platform center velocity with    and magnitude 

of angular rotation with  . The angular velocity points in the direction of  . The 

velocity vector of each wheel center can be then calculated as: 

           ,                (23) 

In the case of perfect rolling the velocity    is a linear combination of the roller rolling 

around     and the wheel rolling around   . Assuming that     and    are not aligned 

i.e.   (    )          then: 

             (24) 
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implying 

  
      (  

     ) (25) 

   
      (   

   ) (26) 

therefore 

   
  

   

  
    

     
   

   

   
   

    (27) 

Where the first term on the right is the passive rotation, the second is caused by wheel 

rotation, produced by driving motor torque. If we denote the angular speed of the 

motors with    then, in case of perfect rolling: 

   
 

  
    

       (28) 

where the other – the passive – part of the sum: 

  
   

  
    

    (29) 

is explicitly assumed not to play any role. Substituting in equation (23), noting that 

  
          ( ) we get: 
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             (30) 

We can simplify 

   
          

   
     

   
    

     (31) 

because   is parallel to the z axis and     is perpendicular to    . Summarizing the 

equations for the system we get: 

  (
  

 
)        ( ) (32) 

where 
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 (33) 

Equations (32) and (33) represent the general kinematics model of  an omni-wheeled 

platform. This allows the analysis of this class of omnidirectional robots as a function of 

the roller orientation   and roller position  . According to Indiveri [25] any desired 

vehicle velocity can be implemented, given proper    wheel velocities if: 

-     ( )    i.e. roller axes are not parallel to wheel axes, which would render 

the wheel incapable of generating movement 

-         , this corresponds to controllability of the system 

One of  the most popular configurations is a symmetrical three wheeled platform with 

     roller orientation and wheels mounted at      to each other (Figure 15. right). 

For this configuration, if we take the geometrical center as our origin, using Figure 15. 

and equations (32) and (33), the kinematic equations turn out to be the following: 
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where   stands for the radius of the platform. 

Another popular configuration is a four wheeled platform with      , more 

commonly known as the Mecanum platform (Figure 15. left).  

 

Figure 15. Most popular omnidirectional configurations 

Again taking the center of platform as the origin, the kinematic equations are the 

following: 
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(35) 

It is easy to check that the two rules mentioned above hold, namely     ( )    and 

    ( )    for both models. Therefore the two platforms are indeed useful. 

2.5.2 The Mecanum platform 

From the kinematic equations derived in the previous section, to be able to exploit 

omnidirectional capabilities, the wheels have to be mounted in a certain pattern, shown 

on Figure 16. The wheels mounted across from each other are mirrored, so that 

    ( )    (see equation (33)). 
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Figure 16. Wheel configuration 

Figure 17. shows some of the basic movements possible with this configuration. 

Turning and movement in arbitrary directions can be achieved by choosing appropriate 

angular velocities for each wheel. 

 

Figure 17. Basic movements of a Mecanum platform (viewed from above) 

2.5.3 Empirical model validation 

Having the tire model comprises the most significant portion of the simulation. To 

complete the model a simple chassis needs to be added. I developed two platforms in 

simulation. I modeled the vehicles as a single mass with inertia, with the wheels 

attached rigidly. Since we assume movement on flat terrain, using no suspension is a 

reasonable simplification. In case of the Mecanum platform, I added the payload as a 

point mass attached to a vertical actuator – the fork – to have a simple forklift. The 

platform models can be seen on Figure 18. as rendered by the Dymola software. On the 

left the Mecanum platform can be seen – the body is represented by the red brick, the 

payload by the green sphere. Wheel forces are visualized by the blue arrows. In this 

example the load is shifted to the front left side representing a carelessly loaded cargo. 

On the right the three wheeled platform can be seen. More specific descriptions of the 

platforms can be found in Appendix A. 
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Figure 18. Simple Mecanum forklift and a three wheeled platform rendered by Dymola 

To verify the model I created a controller that can drive the wheels according to the 

inverse kinematics model, developed in section 2.5.1. In these equations the platform 

velocities are known and the individual wheel angular velocities need to be calculated. 

The equations are well known in the literature, they can be derived by applying simple 

geometric calculations. Results similar to mine were obtained for example by [34] and 

[18]. 

By using the inverse kinematic equations (35) I was able to demonstrate whether the 

vehicle moves as expected. Figure 19. shows a spin while translate maneuver in which 

the Mecanum wheeled robot has a constant velocity in the global x direction a 

sinusoidal velocity in the global y direction, while having a constant angular velocity. 

The figure shows snapshots of the experiment and demonstrates that the platform moves 

according to expectations. 

 

Figure 19. Spin while translate movement of the Mecanum forklift model 

 

Figure 20. Angular velocity commands vs. time for the spin and translate maneuver of the 

Mecanum platform 
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The control signals – angular velocities – required to perform this movement are shown 

on Figure 20., the colors blue red, green, purple stand for the wheels 1, 2, 3 and 4 in this 

order, according to notations on Figure 15. 

A similar experiment was conducted for the three wheeled platform according to 

equations (34). Snapshots from the simulation can be seen on Figure 21., control signals 

on Figure 22. 

 

Figure 21. Spin and translate maneuver of the three wheeled platform 

 

Figure 22. Control signals vs. time of the three wheeled robot for the spin and translate 

maneuver 

Both platforms moved as expected, demonstrating the usability of the omni-wheel 

model for simulation that I created. To adapt it to a certain wheel material one has to 

tune the model parameters as one would with a normal tire. 

2.6 Conclusion 

The wheel model is possibly the most important part of any vehicle simulation, since 

the wheel is the component that connects the platform with the environment. The 

contact point – or patch – is determined in the context of the wheel model, also this is 

the part that generates forces and torques that move the platform. Tire modeling in 

vehicle simulation is a well researched discipline, with results that have proven 

themselves in countless applications. Many aspects of tire models can be adapted to be 

used in omnidirectional simulation. Contact point calculation, friction force generation 

of the rubber compound, dynamic force generation characteristics are all very similar 

for both wheel types. By leveraging the wealth of background information available for 

regular vehicle related tire research, rapid prototyping of omnidirectional wheels in 

simulation becomes fairly easy. 
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Thesis I: I created a method for adapting conventional empirical tire models 

to emulate the behavior of an omnidirectional wheel. The model retains the 
characteristics and parameter set of the adapted regular tire model, and the 
characteristics of the chosen omnidirectional wheel – such as roller angle – 
are superposed. 

The behavior of the model is validated by applying inverse kinematic models of the 

most popular omnidirectional platforms in simulation. 

 

Related publications: 

 

[KJVS12], [KV12b], [VAL12] 
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3 Brake assistant for omnidirectional vehicles 

3.1 Motivation 

Due to their design omnidirectional wheels in general lack the capability to generate 

substantial side forces, in the direction perpendicular to the roller axis – the passive 

direction. This is caused by the free rolling rollers around the circumference. An 

interesting consequence is that an omnidirectional platform with, free rolling, sliding or 

locked wheels, will tend not to keep its original orientation. If, in contrast a cart with 

free rolling, conventional wheels is pushed with a small force
8
 at an angle to its main 

rolling direction, the cart will nonetheless roll in the direction the wheels are pointed, 

perhaps with a small sideslip angle. This is illustrated on Figure 23. 

 

Figure 23. Illustration of the effect of side forces and pushing 

This is not true for omnidirectional platforms, they move in the direction of the push. 

This is also true in the other way around, when the wheels are braked, even a moderate 

difference in wheel load – meaning a different friction force – causes the platform to 

turn until the torque of wheel forces reach an equilibrium. The effect is similar to a 

regular car swerving in a corner while braking, however in case of omnidirectional 

wheels this happens without excessive slip of the wheels. It is important to note that this 

behavior is perfectly normal, this is the very effect that allows omnidirectional 

movement. 

A very good example can be seen on Figure 24., with a simulated braking maneuver 

with a Mecanum wheel platform. In the simulation the robot is unevenly loaded, most 

of the weight is resting on the front left wheel. The robot is accelerated to a certain 

velocity, going straight forward, then all the brakes are actuated at the same time. Figure 

24. shows three snapshots taken after braking started. It is clearly visible that the robot 

turns around the most loaded wheel, because that generates the highest friction force. In 

this example when the active direction of the wheel with the highest load is parallel to 

the instantaneous velocity vector equilibrium is reached, and the robot decelerates and 

stops in this orientation. The blue arrows starting from the wheel center represent tire 

forces, the yellow arrow at the platform center is the instantaneous velocity vector. 

Clearly this behavior is undesirable for the operator as it is unexpected, therefore 

dangerous. It is easy to see this behavior leading to an accident in a narrow aisle. 

                                                 
8
 Obviously I am talking about a force which is not large enough to push the cart sideways or tip it over. 

F A F 

A 

β 

Vehicle with regular wheels Vehicle with omni-wheels 
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Figure 24. Brake induced swerving of a Mecanum platform 

3.2 Problem description 

To be able to find the most suitable control methodology for the problem at hand it is 

important to find an appropriate description of the system. As I already explained in 

section 2. the wheels exhibit nonlinear force generation characteristics, that depends 

strongly on wheel load and ground – tire interaction. This dependency can be described 

by appropriate wheel models, as accurately as needed, however the result will be only as 

accurate as our knowledge of instantaneous load distribution and local ground 

characteristics. The force vectors during a braking maneuver are illustrated in Figure 25. 

Friction forces    at the wheels are generated to oppose wheel velocity and point in the 

active direction of the wheel i.e.: 

         (   ‖   ‖)  (36) 

where    is a nonlinear function of wheel load and ground characteristics, describing 

wheel force generation,     is a unit vector pointing in the wheel’s active direction (see 

Figure 14), ‖   ‖ is a unit vector pointing in the opposing direction of the velocity of 

the given wheel center. 

  

Figure 25. Forces and velocities during braking – illustration by a Mecanum platform 

The deceleration of the platform depends on the direction of    which is a trigonometric 

function of    and  .  

As a straightforward approach one could try and linearize the equations. To linearize    

knowledge of the wheel model’s operating point is needed, which depends on numerous 

uncertain parameters. 

To linearize the angle dependence of    the rotation of the platform would need to be 

constrained to a small angle for the linearization to be valid. This is too prohibitive a 

constraint, as for an omnidirectional platform it is normal to have high angular velocity 
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causing the direction of the platform orientation to change substantially during the 

duration of a braking maneuver. 

After these considerations I decided to use a nonlinear control approach as it is clear 

that a parameter uncertain nonlinear MIMO system needs to be considered. Its state 

equation can be written in the general form: 

 ̇   (   ) (37) 

where the usual notations are used –   is the state vector,   is the input and  ( ) is a 

nonlinear function. In the case of an accelerating mechanical system, typically the state 

vector consists of resulting linear and angular velocity of a reference point. However for 

this particular case – braking omnidirectional platforms – it is more practical to also 

include    wheel center velocities:   {        } . These can be derived in a simple 

manner from linear and angular velocity of the platform center: 

             (38) 

where     is the vector pointing from the platform center to a given wheel center.  

The input vector consists of    friction force of the wheels. System parameters do not 

change with time, therefore we can consider the system autonomous, or time invariant. 

Dynamical equations can be derived from Newton’s law: 

  ̇  ∑  

 

 (39) 

   ̇  ∑      

 

 (40) 

These equations are written for the geometrical center of the vehicle. Uncertain 

parameters are   mass of the vehicle, the magnitude of    and the    inertia matrix of 

the vehicle. State variables    and   are assumed to be measurable. 

Another important property of the system, that it is strongly cross coupled, all inputs 

have an effect on all state variables. This property concludes from the form of the 

general kinematic equation of omnidirectional platforms (see section 2.5.1). 

In the literature numerous examples are available for the control of inaccurately 

modeled nonlinear MIMO systems [15], [27], [44], [47]. To overcome the problem of 

model inaccuracy when controlling nonlinear systems, sliding mode control is reported 

to be very successful [26], [44], [45], [53]. 

3.2.1 Sliding mode control 

When controlling real dynamical systems uncertainties and disturbances in both the 

system model and the variables are a common problem. Effects of these uncertainties 

have to be taken into account in the controller design as they can severely impair control 

performance, or even cause instability. 

Control of dynamical systems in the presence of heavy uncertainties has became an 

important subject of research. Due to the efforts made in this field many different 

approaches made considerable progress, such as nonlinear adaptive control, model 

predictive control and others. These techniques are guaranteed to reach the control 

objectives in spite of modeling errors and parameter uncertainties.[53] 

Imprecision may come from actual uncertainty about the plant, for example because of 

unknown parameters, or they might come into the model on purpose by using a 

simplified representation of the system’s dynamics. These uncertainties are classified as 

- structured - or parametric 
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- unstructured - or unmodeled dynamics 

The first kind is actually included in the terms of the model, the second corresponds to 

underestimation, or oversimplification of the system order. 

Sliding mode control belongs in the family of robust control, because it is extremely 

tolerant of parameter inaccuracies [27]. It is characterized by high simplicity. It utilizes 

discontinuous control laws to drive the system state trajectory onto a specified surface 

in the state space, the so called sliding or switching surface, and to keep the system state 

on this manifold after reaching it. Evidently this approach only works when the control 

input is designed with sufficient authority to overcome the uncertainties and 

disturbances acting on the system. The main advantages are, that while the system is on 

the manifold it behaves like a reduced order system and system dynamics are insensitive 

to uncertainties and disturbances. 

All these great advantages however come at a price, good performance can only be 

achieved with extremely high control activity. This results in the so called chattering 

effect, which is the result of excitation of high frequency components of the system. 

Ideally control activity has an infinite switching frequency, which in real life 

applications is a high but finite frequency. High control activity also causes wear and 

tear of mechanical components. For further reading the reader is referred to: [15], [27], 

[47], [53], [56] and others. 

Formally the problem can be described as follows [53]: Let’s consider the following 

nonlinear system 

 ̇( )   (   )   (   ) ( ) (41) 

where  ( )    ,  ( )    ,  (   )       and g(   )      . The discontinuous 

feedback is given by: 

   {
  

 (   )      ( )   

  
 (   )      ( )   

            (42) 

where   ( )    is the  -th sliding surface, and 

 ( )     ( )   ( )    ( )     (43) 

is the (   ) dimensional sliding manifold.  

The control problem consist of developing the   
    

  functions and the sliding surface 

 ( )   , so that the closed-loop system exhibits sliding mode. 

A sliding mode exists if in the vicinity of the sliding surface the velocity vectors of the 

state trajectory are always directed towards the surface. In consequence if the state 

trajectory intersects the sliding surface, the value of the state trajectory remains within a 

neighborhood of the surface. 

An ideal sliding mode exists only when the state trajectory of the controlled plant 

satisfies    ( )    at every      for some   . From time instant    the system state 

is constrained on the discontinuity surface which is an invariant set after the sliding 

mode has been established. This requires infinitely fast switching. In real systems there 

are always imperfections, such as delays, hysteresis etc. causing the switching 

frequency to be a smaller, finite value. Because of this the system state oscillates in the 

neighborhood of the sliding surface. This oscillation is called chattering. If the 

switching frequency is significantly high compared to the dynamics of the system this 

phenomenon may have a negligible effect. 
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3.3 Controller design 

To keep the platform on a certain trajectory, first this trajectory has to be defined. The 

goal is twofold: 

Goal 1: the platform has to be prevented from swerving as much as possible, in the 

presence of feedback noise and, dynamic disturbances. 

Goal 2: the platform has to be stopped, preferably in a short distance. 

The goals are simple but several problems pose difficulties in reaching it: 

- Since the wheels cannot be turned, the direction of force they generate only 

depends on the velocity direction of the respective contact patch, therefore the 

only option to assert control is to modulate the braking force. 

- Force generation is passive in a sense that it can only act to decrease velocity, 

and not to increase it, making control authority unbalanced. 

- Generally the friction forces of the wheels are not parallel with wheel velocities, 

therefore they will act to divert the platform from its original path. 

- From equations (32), (38), (39), (40) it is clear that all    effects all   ,    and   

therefore it is generally not possible to affect a single degree of freedom of the 

platform independently. 

These considerations mean that brake modulation has to depend on the direction of the 

friction force, if it drives the platform towards a given trajectory, then the brake needs to 

be applied, otherwise the wheel needs to be rolling free. To construct the sliding surface 

we have to consider the nature of trajectory we would like to track. Since the 

magnitudes of the forces are uncertain, the trajectory cannot be defined as an exact 

function of time. If we assume that the platform has   ,    initial velocities at the 

moment when braking starts, then the trajectory needs to have the following 

characteristics: the platform has to gradually lose its    angular velocity and it cannot 

gain velocity in the direction perpendicular to    i.e. it cannot divert significantly from 

the trajectory it was following before braking. The controller has to drive the velocity 

components corresponding to rotation a sideways translation to zero and keep them 

there. 

To translate these considerations into control rules the sliding surface can be written in 

the following form for each wheel: 

                   (44) 

where the three components correspond to wheel velocity components parallel and  

perpendicular to    and a component due to  . Basically the three components show 

whether the given wheel can decrease kinetic energy along three degrees of freedom 

with respect to   . 

The switching control law can be constructed so that when       becomes negative the 

brake of the  -th wheel gets actuated, otherwise the wheel rolls free: 

      ( (     )) (45) 

where 

  ( )  {
            
           

     (46) 

In practice this means a switchable electronic brake system, or a hydraulic cutoff valve. 

The control loop is shown on Figure 26. 

To show that the control system is stable I use the so called passivity approach [27] (p. 

436). The passivity approach means that if the components in the feedback connection 
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are passive in the sense that they do not generate energy on their own then it is 

intuitively clear that the system will be passive. 

 

Figure 26. Brake assist control loop 

Generally a system is called passive if there exists a storage function  ( )   , such 

that for all        

 (  )   (  )  ∫  ( ) ( )  

  

  

 (47) 

where   is the system output and   is the input respectively. This equation simply 

states, that the energy ( ( )) of the system consists of the initial energy plus the supply 

rate   . If the equality holds, the system is lossless, if it is a strict inequality then the 

system is dissipative. For example energy is lost because of friction in mechanical, 

because of heat exchange in thermodynamical, or because of heat generation in 

electrical systems. 

If we set the feedback to      , where   is a positive gain then it is guaranteed that 

the system energy remains bounded, thus the feedback system is stable. 

Considering an omnidirectional platform in the context of my brake assist system, 

energy is stored in the form of kinetic energy. This can be written in the following form: 

  
   

 

 
 

   

 
 (48) 

considering the linear and rotational kinetic energies. The “supply rate” – in this case 

would be more appropriately called the “drain rate” – is the product of friction force and 

velocity which is essentially the power dissipated by braking the wheels. The goal of the 

braking maneuver is to drive the kinetic energy to zero. Brake forces are always 

generated to oppose movement, causing negative acceleration. Since no energy is put in 

the system by the brake forces, it is evident that the system is passive and the inequality 

(47) holds true for         time instants. However for a braking maneuver a strict 

inequality is needed for the vehicle to stop in a reasonable distance, which means that if 

we neglect small frictional effects such as rolling resistance and bearing friction etc. a 

strict inequality can only be achieved if it is guaranteed that: 

-  at least one brake is actuated at any time instant 

-  with its active direction at an angle other than     to the direction of movement 

Part of the second criterion is guaranteed by design, if the vehicle is created so that the 

rank of   in equation (33) is 3, so that the vehicle is in fact useful. The first criterion 
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| | 
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means that the error function of at least one wheel has to be negative at all times. This is 

easily guaranteed if we add a rule for the controller that turns every brake on if       
 . 

3.4 Sliding manifold 

The function defined in the previous section (eq. (44)) has to be constructed so that it 

has to be a sliding surface by definition as described in section 3.2.1. This implies that 

control action has to be applied to keep the system trajectory in the vicinity of the 

surface. 

 

Figure 27. Velocity and force vectors of a braking omnidirectional platform 

Let’s discuss the three components of the sliding surface separately. The velocities and 

forces are illustrated on Figure 27. for two general omnidirectional wheels. C marks the 

geometrical center of the platform. The rectangles represent the wheels, their axis of 

rotation is parallel to their shorter side. The elliptical shapes are the rollers touching the 

ground, their active direction is parallel to the longer diameter of the ellipse. 

3.4.1 Perpendicular component 

The component     in equation (44) describes the capacity of the  -th wheel to decrease 

the velocity component of the wheel perpendicular to    . This velocity component is 

due to angular velocity of the platform and sideways translation with regards to     as 

shown in equation (38). To have     correspond purely to the translational movement of 

the wheel center velocity is as follows: 

   
           (49) 

according to equation (38) obviously this equals    instantaneous platform velocity. 

Then: 

      ‖  ‖   
  (50) 

where     is the component of    perpendicular to    : 

     ‖{                }‖    ‖{               }‖
 

 (51) 

and ‖  ‖ is a unit vector pointing in the direction of the friction force: 

   

. . 
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 ‖  ‖       (     
 )    (52) 

The component described by equation (50) is a vector product, its sign depends on the 

cosine of the two vector’s angle, if it is negative then the friction force can decrease the 

translational movement of the wheel with respect to    . The value is scaled by the 

magnitude of this translational velocity. As an example on Figure 27.        can 

decrease     while        would only increase it. 

3.4.2 Angular component 

Friction forces at the wheels cause torque around the center of rotation, and in 

consequence angular acceleration of the platform, if this acceleration opposes 

instantaneous angular velocity then the brake needs to be on otherwise it needs to be 

off. The vector pointing in the direction of angular acceleration, written for the 

geometrical center: 

 ‖   ‖  ‖  ‖  ‖   ‖ (53) 

The direction of this vector is vertical. Clearly when this has the same sign as  , then it 

increases it, so in that case the brake should be switched off. The corresponding 

component can be written as follows: 

     ‖   ‖  |   | (54) 

Again this component is a vector product, in my model the angular velocity vector 

either points up or downwards, so     is negative when they point in opposite directions 

– brake should be actuated – and positive when they point in the same direction – brake 

should be off. The value is scaled by the magnitude of angular acceleration multiplied 

by wheel distance from the center to obtain a velocity dimension. In the example of 

Figure 27.   points downwards – in the –   direction – therefore the friction force of 

       can generate an angular acceleration that decreases it while the force arising at 

       would increase it. 

3.4.3 Parallel component 

This component has to be handled differently as this is the one responsible for Goal 2, 

for stopping the platform in a short distance. Also generally the friction force of all 

wheels are generated to oppose this component, therefore the train of thought applied 

for the previous two cases is not applicable. 

Solution 1: The simplest approach for the problem is to let the component be zero 

yielding: 

               (55) 

using equations (50) and (54). As mentioned in the beginning of section 3.3 from the 

input-output cross coupled nature of omnidirectional platforms, it follows that when 

braking any wheel all three degrees of freedom are affected, so the platform will 

eventually stop if some of the brakes are actuated. 

Degenerate scenarios are possible, when the error function         for    . This 

implies that all brakes are off and the platform is not decelerating. This situation can 

happen for example when a Mecanum platform is moving exactly at a     to its local   

axis and     – this means      . In this case for two wheels, their active direction 

and    is parallel with platform velocity, for the other two their active direction is 

perpendicular to platform velocity, making them incapable of slowing the vehicle. Since 

all error functions are close to zero, it is clearly possible that all errors become positive 
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– due to noise or measurement errors – turning all brakes off. This scenario can be 

handled by different approaches. Probably the simplest approach is to activate all brakes 

when         for    . This guarantees divergence of system trajectory from the 

degenerate scenario. 

When letting      , only angular and perpendicular velocity components are 

“punished” so the controller drives the parallel component to zero only indirectly, thus 

allowing no control over braking distance. 

To construct a better sliding surface     has to be set to something other than zero. 

Solution 2: In order to retain control over platform swerving (Goal 1) it is important not 

to let the parallel component dominate     , therefore an angle dependent weighing 

function has to be defined, so that Goal 2 only dominates the error function when the 

given wheel is most effective i.e. its active direction is close to parallel with its velocity 

(      ). A cosine function of the angle between the active direction of the wheel and 

the velocity of its center seems to be a good candidate, as it yields 1 when the vectors 

are parallel and 0 when they are perpendicular. 

          (
     

 

|  |
) (56) 

However the derivative of cosine is small around zero, intuitively it is clear that the 

higher the value in the vicinity   , the higher the “punishment” of the parallel 

component. I propose a more useful weighing function for     to be able to put an 

emphasis on either control goal. 

Let’s define the parallel component in the form: 

      (  )‖  ‖    (57) 

where  (  ) is the weighing function dependent on the angle between     and   . 

 ( )         and     is the component of    parallel to   . The enhanced function I 

propose is a cosine function mirrored piecewise to the line connecting its extremes. The 

index   is omitted for clarity. 

   ( |
  

 
|    ( |

  

 
|       ( )))

 

          (58) 

where   is a tuning constant, an odd positive integer, in order to keep the sign of the 

function. After simplification: 

   (  |
  

 
|       ( ))

 

 (59) 

Figure 28. shows the initially envisioned cosine weighing function, and enhanced 

weighing functions with     and    .  
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Figure 28. Enhanced weighing functions for the parallel component, larger   values yield a 

steeper function 

The effect of the function is intuitively clear from the graph, by choosing a value for   it 

is possible to tune the controller and favor orientation control or stopping distance, by 

choosing a high   value, behavior increasingly similar to Solution 1 can be obtained, a 

lower value yields shorter stopping distance. The differences are demonstrated trough 

experiments with a Mecanum platform in section 3.6. 

3.5 Disturbance rejection 

As Khalil [27] explains in his book uncertainties of a nonlinear system may appear in a 

structured or in an unstructured form. Unstructured uncertainties are, for example 

incorrectly identified model parameters, or external noises, while structured 

uncertainties are a result of modeling choice, i.e. of deliberate model simplification. 

The philosophy behind the controller ensures high immunity against structured 

disturbances, because it is created with the assumption that only the kinematic structure 

of the vehicle is known, and requires no information on system dynamics. Since the 

control goals are not defined as an exact function of time, but rather as constraints on 

the velocities in three degrees of freedom, these goals can be reached even with a 

changing dynamic model. 

It is intuitively clear that the control rule is robust against unstructured disturbances, 

because it only uses the direction of force and velocity vectors to determine a binary on 

off rule for the brakes, making the magnitude of the vectors of secondary importance, 

thus effectively be immune against feedback noise. The controller is also immune 

against small changes in the model, for example the changing ground contact position 

of a real omnidirectional wheel (see section 2.3.2.) makes small deviations in the 

direction of the ground force however the controller only uses the sign of its projection 

on velocity components, making it robust against small directional changes. 

The following chapter shows the working controller in simulation and demonstrates its 

capabilities, under various conditions. 

3.6 Demonstrative experiments 

To demonstrate the capabilities of the system, I realized the controller in the Modelica 

language, and integrated it into the omnidirectional vehicle simulation described in 

section 2.5. I ran experiments with the two most popular platforms. 

The Mecanum platform has four wheels, the vehicle body is represented by a point 

mass with inertia, and the load is represented by a simple point mass. Both the position 

and value of the masses, as well as vehicle dimensions are configurable. The platform is 
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shown on Figure 29. The body is represented by the red brick and the load is the green 

sphere. It is easy to see, that the center of gravity is offset to the front left of the 

platform simulating a carelessly loaded heavy cargo, and an obese driver. 

 

Figure 29. The most popular omnidirectional platforms in simulation, rendered by Dymola 

I also built a model of a three wheeled robot, with    rollers. Its body is represented by 

a point mass with inertia. 

Speed measurement feedback can be realized by any convenient method, however I 

propose an optical speed sensor mounted on the platform, described later in this 

dissertation, in section 4. The sensor measures true ground speed, and angular velocity, 

and works much like a conventional optical mouse. This method provides better speed 

and precision than similar works from the literature [28], [29]. The sensor is included in 

the simulation by quantizing the simulated speed values with a zero order hold, and 

adding random noise. 

The control loop works the following way: When the driver – or autopilot – pushes the 

brake pedal, the brake assist gets activated and the value of     is stored. Based on the 

velocity values    and  , received from the optical feedback unit, instantaneous wheel 

velocities are calculated according to equation (38). During the braking maneuver the 

controller continuously evaluates the four       error functions for the four wheels. 

Based on the sign of the  -th error function the actuator at the  -th wheel lets brake 

pressure trough, – the brake force asserted by the driver gets applied – or inhibits 

braking – lets the wheel roll freely. For practical reasons, to avoid low speed drift, the 

brake assist is only active above a certain velocity threshold, below that it is switched 

off, and all the brakes are activated normally. 

3.6.1 Braking in a straight line 

 

Figure 30. Demonstration of brake assist, slowing down from 10m/s 

Figure 30. shows a demonstration of the brake assistant. The upper part shows 

snapshots of an emergency braking trajectory at regular intervals, with the brake assist 

deactivated, the lower part shows the same experiment with the brake assist activated. 

The initial velocity is 10m/s.  

start of braking 

stop 
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Figure 31. Platform velocity components in body reference and values of       vs. time for the 

straight line braking maneuver. Mecanum platform, unassisted case. 

The difference between the two trajectories is obvious, with the brake assist activated, 

the vehicle does not swerve, but keeps its initial direction of movement. 

Figure 31. shows platform linear and angular velocities in local coordinates on the 

upper graph and the error function for each wheel on the lower. For both graphs the 

horizontal axis is time. On the error graph, the red, blue, green, cyan colors show the 

error for wheels 1, 2, 3, 4 respectively. The brakes were engaged at 4s. 

Figure 32. shows the same quantities for the same experiment, this time with the brake 

assist activated.  

 

 

Figure 32. Platform velocity components in body reference and values of       vs. time for the 

straight line braking maneuver. Mecanum platform, assisted case. 

It is clear that the error function (the distance from the sliding manifold) is an order of 

magnitude smaller in the assisted case, also sideways velocity and angular velocity of 

the platform are negligible.   
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Figure 33. Brake assist on the three wheeled robot. Upper left unassisted, right below 

assisted. 

I ran a similar same experiment for the three wheeled omnidirectional platform to show 

how the general control rule works for a different platform. Note that the only 

difference in the control equations comes from the difference in the kinematics of the 

two robots. The three wheeled robot has a homogeneous spherical body of 500kgs with 

plastic-like density. It is mounted on the platform with an offset relative to the 

geometrical center to create imbalanced wheel load. The body is represented by the red 

sphere on Figure 33. The first snapshot is taken while moving with constant speed, the 

second shortly after braking and the third at the final position. The effectiveness of the 

controller is demonstrated on a short distance stop, there is significant difference 

between the orientation in the resting position for the unassisted (left) and the assisted 

(right) case. 

 

 

Figure 34. Platform velocity components in body reference and values of       vs. time for the 

straight line braking maneuver. 3-wheel platform, unassisted case. 

Figure 34. upper graph shows linear and angular velocities in the vehicle frame. It is 

clear that braking was started at an approximately     movement (     ) however it 

does not stay that way, and the platform also gains angular velocity. The lower graph 
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shows the error functions for the three wheels, in this experiment the vehicle comes to a 

complete halt within less than a second. 

 

 

Figure 35. Platform velocity components in body reference and values of       vs. time for the 

straight line braking maneuver. 3-wheel platform, assisted case. 

Figure 35. shows the error and velocity functions for the same experiment. The errors 

decline more rapidly and the linear velocity components “stay together” showing that 

the initial     direction of movement is kept. 

3.6.2 Demonstration of disturbance rejection 

The controller behavior in the presence of structured uncertainties is, unfortunately 

difficult to test in simulation, however my approach on that was to create a fairly 

complex physical model in the simulator, while the controller is based on the kinematic 

model of the vehicle, which is clearly a crude representation of reality. The model in 

simulation describes the vehicle with a physics based approach, the platform is built 

from elements with mass, inertia and complex dynamic properties, where applicable. 

This approach ensures that there is considerable difference between the simulated model 

and the model the controller is based on, giving a fairly good idea on structured 

disturbance rejection capabilities, without actually testing the controller on real 

hardware. Unfortunately at the time of writing I had no such opportunity. 

The situation is a lot better when it comes to demonstrating the capabilities of the 

controller facing unstructured uncertainties. I investigated several kinds of disturbances. 

I quantized the feedback signal in time, thus creating a time dependent error in the 

feedback, also getting closer to the behavior of a real sensor. The sampling time of the 

simulated velocity sensor was 0.01s and a zero order hold supplied the feedback 

between sampling instants. All the simulations of section 3.6. were made with this kind 

of feedback, the effect of the zero order hold is clearly visible on some of the signals 

(see Figure 34. and Figure 35. for example). 
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 Sensor noise is simulated by a uniform distribution
9
 ( ) centered around the real value. 

It can be set independently for the linear and the angular velocities. Also an offset can 

be incorporated in the signal. 

 ̃      (  )     (60) 

where  ̃  is the noisy linear velocity signal and    [       ] is an offset. Similarly 

 ̃      ( )     (61) 

where  ̃ is the noisy angular velocity measurement and    is an offset. 

To introduce another kind of disturbance I created a patch on the ground with smaller 

friction coefficient and made the vehicle brake with some of its wheels on the “icy 

patch” and the others on regular ground. The maneuver is shown on Figure 36. The 

bright red colored platform is the assisted and the dark red is the unassisted vehicle. 

 

Figure 36. Braking on an ice patch. Showing snapshots of two experiments overlaid – bright 

assisted, dark unassisted platform. 

Parameters of the platform (mass inertia load distribution, wheel characteristics etc.) are 

the same as in the experiment of section 3.6.1. Braking is started when one of the 

wheels is already on the ice patch, at 3s. The unassisted robot quickly gains some 

angular velocity due to the wheel on the ice loosing traction and stops after a 

considerable amount of swerving. The assisted robot however continues on without any 

significant change in orientation, or direction of movement. The most significant 

difference is that the assisted robot stops almost half a platform width farther. This is 

obviously caused by having to release the brakes very often on the wheels on normal 

ground to even their torques with the wheel on ice. Error functions and state variables 

can be seen on Figure 37. and Figure 38., in this case the differences speak for 

themselves. 

                                                 
9
 Uniform distribution might not be the best simulation of sensor noise, however my purpose here is to 

demonstrate disturbance rejection of the controller. 

      

      

STOP 

“ICE” 

BRAKE 



Brake assistant for omnidirectional vehicles 

 

41 

 

 

 

Figure 37. Braking on an ice patch – Velocities and errors, unassisted 

 

 

Figure 38. Braking on an ice patch – Velocities and errors, assisted 

I also added some noise to the feedback. Figure 39. shows the final stopped state of the 

previous ice patch maneuver with a noisy feedback signal, where    {           }, 
   {        }, with the noisy values being linearly distributed in the range of       

around the real value. The platform marked with a yellow circle was operated with a 

noisy feedback, the dark red platform and the bright red platform – partly occluded by 

the one with noisy feedback – are exactly the same as in the final position of the 

previous experiment (Figure 36). The difference is small in spite of the amount of noise 

and offset injected into the system.  
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Figure 39. The effect of noisy feedback – noisy platform marked with yellow circle 

 

 

 

Figure 40. Simulated noise on the feedback signals – blue original, red noisy 

Figure 40. shows the noise applied to velocity signals, measured noisy signals are 

marked with red, the original signals are in blue. The graphs show – from top to bottom 

– x and y component of linear velocity and angular velocity. 
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Figure 41. Comparison of error functions – blue no noise – red noisy feedback 

 

 

 

Figure 42. Comparison of velocities – blue no noise – red noisy feedback 

Figure 41. shows the error signals for wheels 1, 2, 3 (top to bottom) for the noisy 

experiment in red and for the experiment with no noise in blue. Figure 42. shows 

velocities for the two experiments, again noisy in red and blue with no noise. x, y linear 

velocities and angular velocity, top to bottom. It is clearly visible that in this experiment 

the noise had most effect on the stopping distance, it had minimal effect on the angular 

velocity, and as it can be seen in the final position from the animation the controller still 

prevented the platform from swerving. 
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3.6.3 Braking in a turn while translate movement 

Braking in a straight line, the brake assist controller demonstrated that it can prevent 

unwanted swerving. Also high disturbance rejection capabilities were shown. When 

slowing from straight movement the most important components of the       error 

function are     and     , as these are responsible for keeping the trajectory straight. 

When there is substantial angular velocity the situation is more complicated. I created 

demonstrative experiments to show the effect of different realizations of the     

component as explained in section 3.4.3.  

The example on Figure 43. shows a braking trajectory from a turn-while-translate 

maneuver, again snapshots from the experiment were captured. The robot starts from 

the bottom of the figure, the first snapshot is at the beginning of braking the last is a 

complete standstill. The ice patch is added as a challenge to the controller, also to 

emphasize the swerving effect. Sub-figure a) shows the original trajectory, the 

unassisted case. As explained in section 3.4.3 the controller prevents swerving as 

intended with letting       , however this implies longer stopping distance as shown 

in sub-figure b), where the experiment was executed under the same conditions, but 

with an active controller implemented with  ( )   . Sub-plot c) shows the same 

experiment with a cosine weighing function for     ,  ( )     ( ). The experiments 

support my theory that the vehicle stops in a shorter distance, but due to the relatively 

high value of the cosine function around zero, directional control is worse. 

 

Figure 43. Snapshots from a braking maneuver a) no assistant b) 0 weighing function 

 c) cosine weighing function 

Figure 44., Figure 45. and Figure 46. show the state variables         and    for the 

three experiments, together with the four       error functions.  

 

a)  b)   c) 
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Figure 44. Linear and angular velocities of the unassisted vehicle (Figure 43. a)) 

 

 

Figure 45. Velocities and error functions for the assisted maneuver – 0 weighing function  

 

 

Figure 46. Velocities and error functions for the assisted maneuver – cosine weighing 

function  

Results of the experiments related to the enhanced weighing function (section 3.4.3) can 

be seen on Figure 47. As a reference sub-figure a) shows the experiment with a cosine 

weighing function, the same as Figure 43. c). Sub-figure b) shows the result obtained 

with     and c) with    . The merit of the enhanced   function lies in the ability to 

choose a preference of keeping platform orientation, or stopping in a short distance. 

Figure 48. shows state variables and error functions for the experiment with     and 

Table 2. sums up the orientation changes and stopping distances for the experiments in 
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this section, for easy comparison. Both orientation changes and stopping distances are 

measured between the start of braking and the final position. 

 

Figure 47. Comparison of weighing functions a) cosine (same as Figure 43 c)) b) enhanced 

function k = 1 c) k = 7 

 

 

Figure 48. Velocities and error functions for the assisted maneuver – enhanced weighing 

function k = 1 

 

 unassisted          ( ) enhanced   

    

enhanced   

    

orientation 

change 
83.8  18.9  63.2  52  26.3  

stopping 

distance 
10m 12.2m 9.7m 9.3m 10.4m 

figures Figure 43. a) 

Figure 44. 
Figure 43. b) 

Figure 45. 

Figure 43.c) 

Figure 46. 

Figure 47. b) 

Figure 48. 

Figure 47. c) 
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3.7 Conclusion 

Thesis II: I created a brake assist controller for a class of mobile robots, that 

force the vehicle to keep its orientation on a well behaved trajectory during 
braking. The control method is nonlinear sliding mode control and it is 
generally applicable to the class of mobile robots with omnidirectional 
wheels. The advantage of the control law is that it is robust against 
uncertainties and disturbances to the extent that it achieves the control goal 
by using only the kinematic model of the platform, with no information on 
load distribution and tire dynamic characteristics. 

Omnidirectional wheels are an attractive choice for mobile robotic applications 

requiring high maneuverability. However their advantages come at a price, they also 

have some aspects in which they are inferior to regular tires. My research focused on a 

disadvantage that stems from the fact that this type of wheels have no force generation 

capabilities in the direction perpendicular to their rollers axes – the very reason they 

enable omnidirectional movement. This unidirectional force generation makes 

omnidirectional platforms change their orientation when undergoing heavy deceleration. 

Uneven wheel load, locally different ground characteristics, differences in wheel 

material or angle have an effect on the force generation capabilities of omni-wheels. 

The unbalanced friction forces with no opposing side forces cause the vehicle to turn 

and/or translate while braking. This behavior obviously may come as a surprise to the 

operator, causing panic and/or loss of control resulting in an accident. As an example, 

slowing down an omnidirectional forklift in a tight warehouse aisle may result in the 

vehicle bumping into the shelves due to its higher width when turning. 

To help with this situation, I created a brake assist controller. As a first step I 

investigated the dynamic model of the braking platform, and concluded that it contains 

nonlinearities and both structured and unstructured uncertainties. As a second step I 

researched viable control methods for uncertain nonlinear systems and settled with 

sliding mode control. Linear and angular velocities of the platform are measured and fed 

back, and brakes are actuated in a discontinuous manner, depending on their ability to 

decrease unwanted velocity components of the platform. Finally I proposed a method to 

tune the control law to favor smaller orientation change or shorter stopping distance. 

The advantage of this approach is that the closed control loop drives the state trajectory 

of the vehicle to zero without having information on dynamic properties of the platform. 

This results in exceptional disturbance and parameter uncertainty rejection properties. 

 

Related publications: 

 

[Kal13], [KV12a], [VAL12] 
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4 Optical velocity measurement 

Velocity of mobile robots can be measured in many ways. The best method to use 

depends on the application. Motion can be measured by sensors exterior or interior to 

the robot. The use of external sensors has the advantage of the robot not having to carry 

the sensor thus introducing fewer limitations on size, durability and power supply. On 

the other hand a great disadvantage is that the motion is constrained to the range of the 

sensor. Sensors mounted on the robot itself usually do not limit the area of movement, 

however they need to be designed with the conditions of usage in mind i.e. vibrations, 

limited power and computational capacity etc. The type of sensor that can be used may 

also depend on the propulsion system. For example incremental encoders are great for 

wheeled robots, however they have little use for legged, or flying locomotion. 

In general, methods depending on the measurement of wheel revolutions have a limited 

use in measuring movement speed of robots, where high values of slip are common for 

normal operation. A good example are tracked and omnidirectional vehicles. For these, 

alternative methods have been conceived. One popular approach uses inertial sensors. 

These gained popularity with the adoption of MEMS technology. A serious drawback is 

that inertial sensors usually measure acceleration, so when integrating their output to 

acquire velocity measurements one introduces cumulative errors due to noise. 

GPS evolved to the level where it is both affordable and accurate enough to mount on 

robots for speed measurement. However its dependence on direct satellite visibility 

makes it ineffective in environments with tall obstacles, or overhead covers, for 

example forests, natural and urban canyons and indoor locations. 

Optical sensors supply by far the most information, and as greater and greater 

processing capabilities become readily available, their use becomes more widespread. 

Their main advantage is that they can supply detailed movement information, 

independent from the locomotion system. The main challenge is that they are sensitive 

to dirt, lighting conditions, calibration and they are only as good as the algorithm behind 

them. 

In general the conclusion is that no single best solution exists, one has to make a 

compromise for the current task at hand, or use multiple methods and sensor fusion.  

Since there is a great potential in optical sensors in general, my work focuses on the 

family of optical motion sensors. I created a sensor concept, that features high 

resolution without any compromise in speed. 

4.1 Introduction to optical ego movement sensors – related work 

When applying optical speed measurement usually two main approaches can be found 

in the literature. The first method employs a forward looking camera, or cameras and 

extracts velocity information from the movement of the surroundings, by optical flow, 

or by 3D from motion or stereo techniques. The forward looking camera is subject to 

changing lighting conditions and usually a detailed image is needed to extract 

information. 

The other method uses an imaging sensor facing the ground, a very good example is the 

well known optical mouse. This method requires simpler devices and algorithms as 

lighting conditions can be handled better and the variety of the image is smaller, in most 

cases the ground has a simple texture, which moves as a single object. 

Optical speed measurement is an emerging discipline, with existing commercial 

solutions and research activity in the academic sector, however many problems remain 



Optical velocity measurement 

 

49 

 

unsolved. As for commercial technologies the most widely known example is the 

optical mouse, which on the other hand has generated a fair amount of academic 

research. The optical mouse uses two distinct but essentially similar techniques for 

displacement calculation. The classical method uses angled LED illumination and relies 

on the micro texture of the surface. The more advanced method is laser speckle pattern 

technology. Laser speckle patterns can be observed when a rough surface (rough, 

relative to the wavelength) is illuminated with a coherent light and the interference of 

the reflected light waves creates a surface dependent random intensity map on the 

detector [13]. (Figure 49.) When the detector is moved relative to the surface, the 

speckle pattern changes accordingly and optical flow can be calculated. The advantage 

over surface texture based methods is its accuracy and ability to function properly on 

relatively textureless smooth surfaces. 

 

Figure 49. A laser speckle pattern (from [13]) 

Frequency analysis is a less frequently used method. The light reflected from the surface 

travels through an optical grating, and is focused on a pair of photo-detectors. The 

surface elements, passing in front of the grating generate a certain signal frequency in 

the detectors depending on the sampling frequency, ground speed, grid graduation, ratio 

of the image, size of the surface elements and the size of the picture on the grating. The 

difference of the two signals is computed and the frequency of the difference signals 

corresponds to true ground speed [12]. 

Indoor dead reckoning solutions for small mobile robots using optical mice were 

suggested by several authors ([40], [6], [48]) T.W. Ng investigated the usability and 

accuracy of optical mice for scientific measurements in several articles ([35], [36]) with 

good results. It was found that the readings possessed low levels of error and high 

degrees of linearity. The mean square error for measurements in the x-axis increased 

significantly when the distance between the surface and the detector was increased 

possibly caused by the illumination direction of the mouse. Several researchers 

proposed the use of optical mice as a dead reckoning sensor for small indoor mobile 

robots in one and two sensor configurations. By using one sensor and kinematical 

constraints from the model of the platform, a slip free dead reckoning system can be 

realized. The kinematic constraint originates from the sensors inability to calculate 

rotation. By using two sensors the constraint can be removed and the measurements 

become independent of the platforms kinematics. Systematic errors originate from 

measurement errors, alignment errors and change of distance from the ground. Bonarini 

[6] achieved results comparable to other dead reckoning systems up to a speed of 0.3 

m/s by using the UMB benchmark test [7]. Sorensen found that the error of the two 

mice system was smallest when the sensors were as far as possible from the centre of 

rotation, and when good care were taken of maintaining constant height. He found that 

when these constraints were met, the system performed significantly better than other 

dead reckoning systems [48]. In their work Palacin et al. [40] found that if 

measurements from an array of sensors were averaged the error became independent 

from the distance traveled. They also found that the sensor needed a different calibration 

when moving in an arc, possibly due to the sideways illumination used in computer 
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mice. Another problem was the extreme height dependence of the sensor, which made it 

impossible for them to use it on carpet. They proposed a modified sensor for they found 

mice to be unfit for mobile robot navigation. My results were similar to other 

researchers, they found that one way to make mouse sensors useful for navigation is to 

equip them with telecentric lens, to avoid magnification changes, to use homogeneous 

illumination, to avoid directional problems and to use at least two sensors to get rid of 

kinematic constraints [TK07]. By using different magnification larger portions of the 

ground is projected on the sensor making higher speeds possible, but this is limited by 

ground texture size. 

Mouse sensors are cheap and readily available, and with certain modifications they can 

be used for low speed mobile robot dead reckoning. However they are limited by their 

low resolution and speed, also their algorithm can only be changed by the factory. 

Horn et al. [23] aimed at developing a sensor system for automobiles. They used a 

fusion approach with two cameras and a Kalman filter. One of the cameras is a forward 

looking stereo camera to estimate yaw rate and forward velocity, the other camera is 

facing the ground and used to estimate two dimensional velocity. It was found that the 

camera facing the ground gave better results for lateral and longitudinal velocity than 

the stereo camera. The fusion approach provided good results even when one of the 

sensors was failing. The system was tested at slow (< 1 m/s) speeds on a towed cart in a 

lab. Chhaniyara et al. [11] followed a somewhat similar approach and used a matrix 

camera facing the ground to estimate speed over ground. They used a mechanism that 

moved the camera over sand and compared optical flow speed estimates with 

measurements from an encoder attached to the mechanism. They used Matlab and the 

Lukas and Kanade algorithm to compute optical flow. They obtained good results at 

low speeds (0-50 mm/s), however the suitability of the algorithm they used is 

questionable. Nourani-Vatani et. al. [37] also used a similar method with a ground-

facing matrix camera mounted on a passenger car. They made experiments arount 1m/s 

and exploited the fact that the car had Ackermann steering, since they used a single 

sensor. The velocity measurements had errors comparable to the wheel speed sensor and 

the cumulative odometry errors were at around 5% after 100m traveled. 

This technology has already found its way to the transportation industry as well. 

Corrsys - Datron has a one-of-a-kind optical speed sensor [12] used for testing the 

dynamics of passenger vehicles before mass production. The sensor is claimed to be 

working on any surface, including water and snow, but it is priced for the big 

automotive manufacturers. It uses the frequency analysis method. OSMES by Siemens 

is an optical speed measurement system for automated trains [46]. It uses the principle 

of laser speckle interferometry mentioned above, and “looks” directly on the rails to 

measure the trains speed. 

It is clear that much work has been done in the field of optical speed measurement and 

navigation, however several issues remain open for research. Current industrial 

solutions are somewhat bulky and definitely not priced for the average mobile robot. 

Solutions by academic researchers have not matured to the level of really useful 

applications, they are usually very slow. Mouse chips are mostly the sensors of choice. 

With some modifications their problems of ground distance dependence, lighting and 

calibration can be helped, but their current speed and resolution is simply not enough 

for high speed (the order of ten m/s) applications. 

Most of these sensors work by using the principle of optical flow. This concept has 

many uses in the field of robotics, from the flow vector field it is possible to obtain 

distance information, avoid collision with obstacles, track patterns on the image etc. 

[14]. It is worthwhile to take a deeper look into this field of image processing. 
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4.2 Optical flow 

Visual movements are caused by the relative displacement of the observer (eye, camera) 

and the objects of the world. The measurement of these motions can be used in several 

areas of robotics, like object tracking and segmentation, navigation, and optical speed 

measurement etc. Most techniques of visual motion measurement are based on the well 

researched discipline called “optical flow”. The basic idea is to compare consecutive 

images of a scene produced by camera and calculate a vector field for each image which 

shows the displacements of the pixels to get the next image of the scene. This vector 

field is often called optical flow or optical flow field (Figure 50.). 

 

Figure 50. The principle of optical flow, demonstrated on a ping-pong player, local 

movements 

Since the first algorithm presented by Horn and Schunck [22] several techniques have 

been published to determine optical flow field. The common base of these techniques is 

the optical flow constraint from Horn & Schunck which presumes that the related points 

in the consecutive images have the same intensity value. Putting it in another way, a 

spatial point projected in the image plane has constant (time-invariant or projection 

invariant) intensity value: 

 ( (    )  (    )     )   ( ( )  ( )  ) (62) 

where 
  

  
  ,  (     ) is the intensity of the (   ) point in time  . 

From a Taylor expansion of (62) or from the dependencies between the total and partial 

derivative using the time invariant property, the general form of constrains is easily 

derived: 
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where 
  

  
 and  

  

  
 refer to the coordinates of the velocity vector (the two unknowns of the 

equation), 
  

  
 denotes  change of the intensity value in time 

  

  
 and 

  

  
 denote 

components of the spatial gradient vector of intensity field. 

This constraint is not sufficient to determine both components of the velocity vector, 

only the component in the direction of local gradient can be estimated. As a 

consequence, to compute the optical flow field it is necessary to introduce additional 

constraints. 
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The method of Horn and Schunck starts from the observation that the points of the 

image plane do not move independently, if we view opaque objects of finite size 

undergoing rigid motion or deformation. Therefore the neighboring points of moving 

objects have quite similar velocities and the vectors of the optical flow field vary 

smoothly almost everywhere. The following formula represents this smoothness 

constraint: 

   {(
  

  
)
 

 (
  

  
)
 

 (
  

  
)
 

 (
  

  
)
 

} (64) 

where   and   are the coordinates of the velocity vector. 

Therefore the goal is to determine a velocity vector field which minimizes the optical 

flow and the smoothness constrain together: 
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It seems that to compute individual velocity vectors it is necessary to take the whole 

image into consideration, because every vector depends on every other vector. 

Therefore this method is classified as a global technique [3]. 

Another approach presented by Lucas and Kanade assumes the velocities are the same 

in a small local area (local techniques) [2]. Therefore to calculate the velocity vector of 

a point it is possible to write more than one optical flow constraint because the points in 

the small region have the same velocity: 

       (66) 

where 
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In this case the local region has     points and   is a weight matrix. 

Because the equation system is overconstrained, and in general it has no solution, 

therefore the velocity estimates are computed by minimizing 

∑   ( )   ( )      ( )  

   (   )

 (71) 

After using the least mean squares method, the solution is the following: 
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  (     )        (72) 

This method can only measure relatively small displacements, therefore it is often called 

the iterative Lucas-Kanade algorithm. 

The previous two algorithms are directly based on the gradients of scenes, therefore 

these techniques are often called differential methods. Unfortunately these techniques 

suffer from a serious disadvantage: accurate numerical differentiation is sometimes 

impractical because of small temporal support (only a few frames) or poor signal-to-

noise ratio [2]. Region-based techniques define velocity as the shift   that yields the 

best fit between image regions at different times. Finding the best match amounts to 

maximizing (or minimizing) a similarity measure (over  ), such as the sum of square 

distances (SSD), normalized cross correlation, etc. The optical flow constraint (the 

related points in consequent images have the same intensity value) can also be found in 

these techniques indirectly because the best match tries to minimize the difference of 

the intensity values of the points. 

One of the well-known techniques belonging to this group was published by Anandan in 

1987 [2] which combines the Laplace-pyramid (to decrease the correlation between the 

pixels of the images) and the “coarse-to-fine” SSD matching method. Another region-

based algorithm presented by Singh, is also built on the SSD metric but uses three 

consequent images from the scene to calculate the displacement of the regions in the 

second image. Therefore the inaccuracy caused by noise and periodical texture is 

decreased [3]. 

A third class of optical flow techniques is based on the frequency domain of the image 

sequence. One of the advantages brought by these methods is that motion-sensitive 

mechanisms operating on spatiotemporally oriented energy in Fourier space can 

estimate motion in image signals, for which matching approaches would fail. A good 

example is the motion of random dot patterns, which are difficult to capture with 

region-based or differential methods, whereas in frequency domain, the resulting 

oriented energy may be rapidly extracted to determine optical flow field [3]. 

These methods can be classified in two groups: energy-based approaches are built on 

the amplitude, phase-based techniques use the phases of the Fourier space to determine 

the optical flow field. The method developed by Heeger [20], formulated as a least 

square fit of spatiotemporal energy to a plane in frequency space belongs to the first 

group. An example for the phase-based methods is the algorithm by Fleet and Jepson 

[17]. 

Another approach for the classification of optical flow algorithms is based on image 

movements. According to this approach two groups can be defined. The first class is 

called local image movement. In this case several objects of various sizes and velocities 

are moving in the visual field of the camera, in different directions. Therefore the 

motion in the image plane can be described with vectors corresponding to individual 

pixels. With this vector field the motion, shape etc. of the different objects can be 

estimated. This is the general case, when the camera is facing forward, any obstacle can 

get into view and even stationary objects seem to move differently due to motion 

parallax. 

In the other case when the camera is facing the ground, we measure movement relative 

to a single object. The class of global image movement is introduced. In this case the 

motion of all pixels of the image corresponds to the relative movement of the camera 

and exactly one object with smooth surface, covering the whole field of view. The 

constraint about covering the whole field of view causes a very close relationship 

between the motion vectors: they have the same length and direction, and they can only 
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change smoothly. This is the reason for the name “global”. The condition of smooth 

surface guarantees that the distance between the camera and every point of the object 

are quite the same, therefore the effect of motion parallax cannot cause sharp 

differences between velocity vectors (Figure 51.). 

                   

Figure 51. a.) Local image movements
10

 b.) Global image movements [TK07] 

These two strict constraints of global image movement can be approximated by a 

camera facing the ground and taking pictures of it periodically. If a general mobile 

platform like a car or mobile robot is assumed, and the camera has a sufficiently high 

frame rate, it is possible to disregard the orientation change between successive images 

as the arc travelled can be approximated with a straight line, and therefore all vectors in 

the optical flow field have the same length and direction. The great advantage of this 

approach is that there is no need to determine the motion of each pixel, because they are 

all the same; therefore the calculation of optical flow is simpler, faster and more 

accurate. From the field calculation techniques presented previously, region-based 

methods fit this application best. In this case the window of the region contains the 

whole image and the comparison is between the two consecutive images. Other 

solutions which calculate the velocity vectors in pixel level and try to determine the 

camera movement from the heterogeneous motion vector field, naturally cannot make 

use of this very important piece of apriori information. Therefore the application of 

these techniques in the class of global image movement is not efficient. 

4.3 Optical correlation sensor 

In this section I outline the basics of the motion measurement system. First I show the 

basic problems and some assumptions on which the investigations are based. Then I 

describe a multisensor setup that is capable of providing two dimensional velocity 

measurements independent of the platform. Finally I present the simulator which we 

created together with my colleague Tibor Takács to verify the feasibility of different 

sensor embodiments, and the validity of my basic assumptions. 

4.3.1 Basics 

The working principle is quite simple: an optical sensor (photo-detector, camera, etc.) is 

attached to the mobile platform, facing the ground. From the visual information - 

captured periodically - it is possible to estimate the real velocity of the vehicle relative 

to the ground. (Figure 52.)  

                                                 
10

 a.) http://of-eval.sourceforge.net/  
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Figure 52. Working principle of the optical speed sensor 

Changing ground distance: The distance between the sensor and the ground is 

continuously changing because of the macroscopic unevenness of the surface and the 

movement of the suspension of the platform, resulting in a variable field of view. This 

causes miscalibration, which can be a serious source of errors in speed measurement. 

Magnification of a conventional lens can be made invariant to defocus by simply adding 

an aperture at an analytically derived location. The resulting optical configuration is 

called "telecentric." Most commercially available lenses can be turned into telecentric 

ones [54]. In this range the image features seen by the camera does not change their 

size. This approach does not solve the problem of the change in depth of field but 

blurriness – a known weakness of telecentric optics [50] – only causes loss of accuracy 

while change of magnification causes miscalibration. 

Maximal speed: Two important parameters of the sensor are sampling rate and the size 

of the image seen by the camera – the field of view. Frame rate and field of view 

determine the maximal measurable velocity. If the speed of the mobile agent is higher 

than this limit, there is no similarity between the consequent images as they do not 

overlap. This is illustrated on Figure 53. 

 

Figure 53. Overlapping snapshots of a ground pattern 

This can cause false readings, or no similarity whatsoever, thus estimation of the real 

velocity is impossible. Fortunately a concrete mobile robot, or car has a well-

determined limit for velocity and acceleration, therefore it is possible to calculate these 

sensor parameters based on apriori information, such as maximal velocity (Figure 54). 

Outliers – false measurements – can be filtered out by a plausibility check, unrealistic 

acceleration values and jumps in measured velocity can be discarded. 

Control 
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Illumination 
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Figure 54. Displacement vs. sampling frequency (at 70m/s) 

Platform kinematics: In case of using only one sensor - unless it is placed in the point 

of interest - the displacement measured needs to be transformed to platform coordinates. 

Additionally rotation information is lost, it has to be calculated from the kinematics of 

the platform. In the extreme case, when the origin of the rotation is in the centre of the 

sensor the angle of rotation cannot be estimated because the sensor does not measure 

any displacement. 

In consequence it is necessary to apply multiple sensors and calculate the displacement 

from their geometry. 

 

Figure 55. Multiple sensor displacement model 

Figure 55. shows a possible case of sensor placement. A sensor is assumed to measure 

displacements in two dimensions. As mentioned above the orientation of the coordinate 

system is constant between two sampling instances because we approximate the 

movement of the sensors with a straight line. This introduces a small quantization error 

which can be modeled as noise.    and    are the distances of the sensors from the 

reference point  ,    ,     and    ,     are the displacement values measured by 

sensors 1 and 2 respectively. From this model the displacement and orientation change 

X, Y and α of the reference point R between time instants       can be derived easily: 
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Displacement of any other point of the platform can be calculated with a simple 

geometrical transformation. If the reference point is in the origin of sensor 1 (    ), 

then equations (73), (74) and (75)  become simpler: 

      (76) 

      (77) 

        (
       

  
) (78) 

This shows that the system is overdetermined, the y component of the second sensor is 

not needed. The equations show another very important property, in particular that the 

calculation of the motion information does not depend on the kinematical model of the 

platform. This is one of the greatest advantages of the method. This property has been 

noted by others too [40], [6], [48]. 

Another very important question is the connection between the distance of the sensors 

and the accuracy of the measurement. From equations (73), (74) and (75) it is clear that 

with greater sensor distance higher accuracy can be achieved. The sensor distance 

required for a given angular resolution can be reduced by increasing the sampling rate 

and/or resolution of the sensors as smaller displacements will be detectable. 

In real applications parallel mounting of the sensors is not always guaranteed. This 

alignment error introduces systematic errors in odometry that can be eliminated by 

calibration as described in the literature, for example [7]. 

4.3.2 Advanced sensor system 

Matrix cameras are very practical for the purpose of movement measurement as two 

dimensional displacement and even rotation can be calculated from a sequence of 

images. However they have certain disadvantages. With commercial matrix cameras, 

high (several kHz) sampling rates are currently unachievable, and the data rate at high 

speeds makes processing challenging. Lowering resolution may help, but at the price of 

losing accuracy. However there is a way to maintain resolution and low data rates, even 

at high speeds, by using line-scan cameras. These type of image sensors have relatively 

high resolution in one dimension, several thousand pixels are common. Frame rates at 

the order of 10 to 100 kHz and relatively low prices are also an attractive attribute. 

The first thing that comes to mind as a disadvantage is, that achieving image overlap 

seems to be impossible, when only a narrow line is captured from the ground. To solve 

this problem appropriate optics, or wide pixel sensors need to be applied as these can 

realize an integrating effect. Figure 56 from [33] shows the projection of a cylindrical 

lens.  
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Figure 56. A cylinder lens focuses rays of light from a point object to a line image [33] 

This kind of lens image a point source as a line, as opposed to a point, which is the case 

for common circular lens. They have magnification in only one plane. Light sources 

perpendicular to the focal line get projected to the same spot, thus achieving an 

integrating effect. This property is very important for speed measurement. Figure 57. 

shows a comparison between the imaging of a matrix camera and the line scan camera 

with a cylindrical lens, or wide pixels. The integrating effect is visualized by the 

different colors. 

 

Figure 57. Illustration of the imaging of a matrix camera and a line-scan camera with 

cylindrical lens 

Since a sensor equipped with a line-scan camera can only detect movements parallel to 

its axis, it only provides one dimensional information. Therefore the main problem to be 

solved, is to make measurements robust to motions perpendicular to the axis of the 

detector. These movements cause an error because they might change the pattern on the 

detector, even without any actual movement in the parallel direction. The problem is 

illustrated on Figure 58. The second snapshot might differ from the one that would have 

been obtained by pure parallel motion. This error cannot be totally eliminated but it is 

possible to decrease this effect with high frame rate and larger field of view of the 

camera. If the sampling frequency is high (which is no problem with line-scan cameras) 

then the perpendicular displacement between two consecutive images can be small 

enough that they will be taken of essentially the same texture element, making 

correlation in the parallel direction possible. 

 

Figure 58. Illustration of the problem of sideways motion 

This is of course a texture dependent effect, and has to be investigated with texture 

analysis. Also this effect can be enhanced by widening the field of view of the detector, 
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i.e. by integrating on a wider range in the perpendicular direction. By doing this the 

images can overlap, giving better correlation values. 

A negative effect of this method, is that the integration on a wider field of view can 

cause contrast to reduce to the level of noise, or completely disappear, making 

estimation of displacement in the parallel direction impossible. For that reason the field 

of view of the sensor is an important design parameter. 

A great advantage of using a one dimensional measurement is that a much simpler 

algorithm can be used than the optical flow algorithms described in section 4.2. In this 

case the algorithm reduces to a simple distance metric calculation and minimum search. 

The neighboring images in a sequence are two vectors of       dimensions where   is 

the resolution of the line detector. As a distance metric, for example the following well 

known methods can be used: 

Euclidean distance: it measures the straight line or “as the crow flies” distance. 

Between the points  (         ) and  (         )  (    ) the distance is 

calculated as follows: 

  √∑(     ) 
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Sometimes the Euclidean squared distance is used, which is the same formula without 

the square root, for faster calculation. 

Manhattan distance: it computes the distance that would need to be travelled between 

two points in a grid-like path. The Manhattan or – city block – distance between two 

entities is the sum of the differences of their corresponding components: 
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Pearson’s correlation: it measures the similarity between two profiles. The correlation 

coefficient is  : 
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(81) 

 

where 
    ̅

  
,  ̅ and    are the standard score, mean, and standard deviation of   

respectively. The result for   is less than or equal to 1. 

Spearman correlation: this is essentially the same as the previous one, the most 

important difference is that instead of working on the vector coordinates       it works 

on the ranks of the coordinates that are obtained by assigning integers to the values 

giving the highest value to the minimum, essentially their position in a descending 

order. This method is useful for determining if there is a monotonous transformation 

that transforms one vector into the other. The use of ranks instead of raw numbers 

makes it more invariant to the presence of outliers and offsets. The formula for 

calculation and other characteristics are the same. 

Cosine similarity: it measures similarity between two vectors by evaluating the cosine 

of the angle between them. For 0 it is 1 and for any other angles it is less than 1. The 
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cosine of the angle determines whether the two vectors are pointing roughly at the same 

direction. It can be derived from the dot product the following way: 

    ‖ ‖‖ ‖     (82) 
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For all these metrics the displacement can be calculated by shifting one of the vectors 

and calculating the distance metric until the smallest distance, is found. The distance – 

in pixels – is the value of the shift. No matter which of these metrics are used, they are 

robust to changes in lighting because adding an offset does not change the location of 

the minima. Another advantage of these methods is that all are conveniently 

implemented in Matlab by the pdist( ) function. 

4.4 Simulation 

To be able to decide the optimal parameters of the sensor and test the candidate 

algorithms, a simulator was created in Matlab with the help of my colleague, Tibor 

Takács in the lab. 

My basic assumptions to start with were the following: low speed displacement 

measurement is most accurate if a relatively small area on the ground is observed with a 

high resolution image sensor to detect small movements accurately. However for high 

speed measurements the sensor needs to look at a bigger area to ensure that the 

consecutive images overlap. Alternatively, sampling rates may be raised to ensure 

overlapping images. Resolution on the other hand, can be lowered to achieve the same 

relative error rates. This contradiction can be resolved by using a variable image size by 

changing the magnification rate of the optics, making the image larger at higher speeds. 

Unfortunately this raises cost, causes calibration and accuracy problems, so we need to 

assume it to be constant. Therefore it is necessary to find a compromise, to be able to 

get reasonably accurate measurements in the whole speed range. 

The program simulates a configurable virtual camera, moving above one of some pre-

recorded surfaces. These surfaces are represented by simple grayscale images taken of 

real textures (e. g. concrete, soil, stone, PVC etc.) with very high resolution. Figure 59. 

shows some of the surfaces I used. The reason for using real images was to test the real 

word applicability of the sensor, to avoid a false judgment by exploiting artificial 

characteristics of a texture, such as consistent texture and repetitivity. Common texture 

databases used in the image processing community – such as the Brodatz texture 

database
11

 – are not fit for the simulator, for they have insufficient resolution and are not 

calibrated for size. Also these databases contain various textures from textile samples, to 

plants and aerial images, that are not a good test candidate for a sensor that is supposed 

to face the ground from a small distance. My pictures were taken with an upside down 

flatbed scanner (HP scanjet 3970) to ensure uniform conditions. By using this method a 

controllable environment was ensured, light, distance, image size, pixel/mm ratio and 

viewing angle were equivalent for all pictures taken. I selected these images due to their 

different properties with respect to texture-size, contrast and brightness. The images 

were taken at a 2400dpi resolution, and their size is 20cm x 20cm resulting in 18896 x 

18896 pixels. This defines the relation between pixel sizes and Si distance dimensions. 

                                                 
11

 for example: www.ux.uis.no/~tranden/brodatz.html (Acc. 2012 Aug.) 
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Figure 59. Sample  images from the textures used in the simulator (2x2cm) 

The virtual camera and sensor implemented in the simulator have several adjustable 

parameters: 

- movement speed 

- angle of movement 

- frame rate 

- field of view in two dimensions 

- signal to noise ratio 

- resolution 

- distance metric. 

Using the virtual surfaces and line-scan cameras it is possible to simulate a lot of 

different movement scenarios.  

The simulator works the following way: The ground is represented by one of the high 

resolution images. An image detector is chosen by defining its       resolution and a 

pixel size. Naturally   has to be set to 1 for a line detector. The field of view is 

determined as a       mm rectangle. The image on the detector is created by resampling 

a       mm portion of the high resolution image onto the       detector image, 

optionally with additional white noise, with an expected value of 0 and a standard 

deviation of choice. The typical value of       is around         , the value of       is 

dependent on the optics, and a typical value is for example        mm. These values 

have to be chosen carefully. Moving the camera at a very high speed limits the number 

of snapshots taken, providing individual measurements rather than an average for a 

ground type. The simulation is based on the assumption that the ground is continuous 

i.e. its resolution is several magnitudes higher than the camera. This poses a lower limit 

on field of view and an upper limit on camera resolution. Also it is not practical to 

define a field of view of 15cm as it will hardly fit in the 20x20cm virtual ground, also 

optics of that size would make the sensor extremely expensive. 

a) asphalt  b) cork   c) stones   d) dust 

e) walking tile     f) wood    g) dry earth    h) linoleum 

i) metal    j) plastic 
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Figure 60. Illustration of the concept of the simulator (dry earth) 

This concludes the setup. When running the simulation the consecutive image is chosen 

automatically by translating the       mm window on the ground image, with a certain 

amount of pixels, according to the pre-defined movement speed, frame rate and 

direction. The direction of movement can be chosen by specifying the angle  . It is 

important to verify if the sensor gives reliable measurements at high sideways 

movements. This concept is illustrated on Figure 60. 

The two neighboring images are then shifted and compared according to a distance 

measure of choice such as correlation, Manhattan or cosine distances as described in 

section 4.3.2. The shift, corresponding to the smallest distance measure is the estimated 

displacement. The exact traveled distance in pixels, is known from the simulated speed, 

so the error of the measurement can be obtained easily, by subtracting the estimate from 

the set value and normalizing. The algorithm is illustrated on Figure 61. 
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Figure 61. Illustration of the algorithm 

The shift values are in pixel index, 
 

 
  is length in pixels, divided by a limit value. A 

practical value for   is for example 2, to limit the shift to half the image length, as there 

is a high chance for false readings, when only a small section of the images are 

compared. The purpose of the simulator was to determine the feasibility, and the best 

parameter values for line-scan cameras in optical velocity measurement. 

4.5 Simulation results 

The most important parameter of the sensor is the field of view and the shape factor of 

the optics. As I modeled the imaging system with rectangular frames, a practical shape 

factor choice is width/length of the field of view in %. A sensor with a small field of 

view is more compact and therefore cheaper. If it is possible to avoid the use of 

cylindrical lens the optics can be simpler and easier to develop. Therefore an important 

purpose of the tests is to find a connection between accuracy and field of view. 

Error measurement: In this simulation it is not trivial how the error should be 

interpreted and visualized. In the background the Matlab code measures all movements 
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in image pixels, as the smallest quantum. The difference between two images is 

calculated from the simulated speed, the frame rate and the scaling factor    [
   

  
] that 

determines the number of pixels in a mm. The error can be measured in image pixels, or 

mm as the difference of estimated and simulated movement, however this does not 

relate well to the camera parameters and the speed of the movement, making 

comparison of experiments difficult. It is possible to relate the distance error to the 

velocity – dividing by the frame rate – and give it as a percent of simulated velocity, but 

still this would make different setups complicated to compare. The error measure which 

worked for me best, is the displacement error measured in camera pixels because this 

shows clearly whether correlation was successful for a certain image pair or not. The 

error is calculated the following way: 
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 ) (84) 

This reads in English: the error in camera pixels equals the difference of the distance 

measured in camera pixels, and the real distance traveled in ground pixels – scaled 

down to camera pixels. The subscript     refers to camera pixel and     to image pixel, 

   and    stand for the scaling factors for mm per image pixel and mm per camera pixel 

respectively. It has to be noted though that this way the error of a high resolution 

camera can be found to be larger than a low one, so this error is only useful when 

absolute speed measurement errors are not the main question. Speed percentage errors 

for example can be calculated this way: 
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where    stands for frame rate.  

Image overlap: the effect of overlap between consecutive frames needs to be 

investigated. For this I set the frame rate to a constant 2500 fps, I changed the field of 

view length from 10 mm to 100 mm while setting the field of view width to 40% of 

length. I changed the simulated velocity from 5 m/s to 200 m/s to be able to see faulty 

measurements too. Figure 62. shows the experiments for the “stone” and “cork” 

textures, and also the percentage of overlap as a function of field of view length and 

simulated velocity. It is visible from the figures that the error mainly depends on the 

overlap, according to the last figure it is around 50%. What this really means is that the 

algorithm gets correct results until the limit set by maximal image shift i.e. 50% (see 

Figure 61.,    ). 
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Figure 62. The effect of image overlap on the error – moving straight 

The effect of shape factor of field of view : Since there are a lot of parameters to tune, 

if we want to investigate the relations of a certain two, we have to fix the rest to sensible 

values. To see the connection between field of view shape factor and accuracy I set the 

field of view length to be between 10 and 70 mm in increments of ten and the width 

from 10 to 100% of the length in increments of ten. To obtain reasonable measurements 

the simulated speed and frame rate have to be set together to allow high values of 

overlap between images. When the sensor moves at a small angle, the measurements are 

free from texture induced noise, therefore to find out about the boundaries of its 

capabilities, I fixed the movement angle to 90° 
12

. I fixed the sensor speed to 12 m/s and 

the frame rate to 2500fps. Many other speed and fps values can be used, the important 

thing is to be able to measure the overlap, between frames. This way the sensor travels 

approximately 4.8mm between frames, perpendicular to the sensors axis, and hardly 

moves in the parallel direction. 

                                                 
12

 in fact it was set to 89° to avoid some numerical errors, this has no significant effect on the outcome 
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Figure 63. Error surfaces as a function of field of view ratio 

Figure 63. shows the error surface as a function of the two dimensions of the field of 

view. The main axis of the line detector is called length, width of the field of view is 

scaled in percentage of the length, 100% meaning a square field of vision. The values 

along the z axis are the averaged errors of twenty consecutive measurements, with the 

same settings, in camera pixels. It is clear from the images that apart from texture 

dependence, the most important factor is overlap between snapshots. This is verified by 

Figure 64. where the overlap percentage is displayed for the same 12 m/s at 2500fps 

settings. 
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Figure 64. (a) Percent of overlap vs. shape factor at 12 m/s, 2500fps, stone. (Dark blue means 

no error.) (b) Overlap percentage at the same movement parameters . Similarity of the two 

patterns is obvious. 

By comparing images of Figure 63. and Figure 64., the conclusion can be drawn that 

approximately 60% overlap is needed for pixel correct displacement calculation, if we 

want good results on any texture. Longer field of view yields better results, however it 

also means larger absolute errors, because a single pixel displacement corresponds to a 

larger distance on the ground. We can also see, that by ensuring sufficient overlap the 

effect of off-axis movement is negligible. 

4.5.1 Effects of texture 

Optical motion measurement in general relies heavily on texture of the moving objects. 

This is of course also true for the sensor system presented herein. If there is no texture, 

no motion can be detected. This problem is addressed in optical mice by using sideways 

illumination, thus creating shadows of surface roughness, and calculating motion from 

the movement of shadows. Another method uses laser speckle patterns (Figure 49). 

 

 

Figure 65. Moving sideways on wood – in perpendicular directions 

In this section I summarize my texture related findings, using the simulation 

environment – this means no special lighting effects. 
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Texture reliance also means that the distance measure can give false readings on 

“difficult” texture, A good example of this is the well known aperture problem of 

optical flow. A perfect repetitive texture, or a direction dependent texture can easily 

cause false correlation. A good example of this is the “wood” texture that I captured on 

a tabletop in the lab. The texture resembles a barcode, in a sense that it has repetitive 

texture in one direction and no, or very small changes in the other. Figure 65. was 

created using the same settings as Figure 63. The first image shows sideways 

movement, parallel to the grain, zero movement is detected perfectly. The second image 

shows movement perpendicular to this direction, that was executed on the transpose of 

this image, this is movement at a right angle to the grain, where it is not possible to 

detect movement with this method. 

The textures “plastic” and “metal” are not detailed enough, measurements are only 

useful, when no noise is added to the simulation, otherwise the texture gets lost in the 

noise. They are shown on Figure 66. 

 

Figure 66. Difficult textures - metal and plastic 

In the small extreme resolution image database I created, there are three textures that 

can be considered regular, that is they have repetitive texture elements of a similar size. 

This is useful for making some texture related conclusions. The other ground images 

have features that stand out of the image thus providing good “landmarks” for 

correlation. The three textured images are “stone”, “asphalt” and “cork”   (Figure 67.). 

  

Figure 67. The three ground patterns with the most regular texture – stone, asphalt and cork 

(20 x 20 cm) 

Figure 68. shows correlation values for these three textures with the exact same settings. 

The graphs display correlation value versus the index, at which the two images are 

shifted and matched. The simulation parameters are the following: 

- Velocity: 20 m/s 

- Angle of movement: 45° 

- Field of view length: 50mm 

- Field of view shape factor: 0.4 

- Resolution: 1024 

- Frame rate: 2500fps 

- Noise: 5 grayscale value 
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From the graphs it is clear that the repetitivity of the texture is reflected in the local 

minima of the correlation functions, stone with the bigger texture size gives two distinct 

minima, while asphalt and cork gives more minima as their texture elements are 

smaller. It is also worth noting, that the minimum of stone is much less pronounced, this 

means that with smaller resolution, higher errors can be expected due to the combined 

effect of noise and flat minimum location. 

 

 

Figure 68. The effect of texture size on correlation functions – smaller texture gives more 

frequent and more pronounced local minima 

By widening the field of view higher overlap values can be ensured, however widening 

the field of view has a negative effect on contrast. This can be seen on Figure 69. 

        

        

 

Figure 69. The effect of field of shape factor 

On sub-figure a) a wider field of view was used than on b). Both image pairs are one 

sampling period apart, taken on the same surface (Stone) at the same speed, and frame 

rate. It is clearly visible that a) has less contrast, due to the integration effect, but the 

samples correlate well, b) on the other hand has more contrast but the correlation is less 

evident. It is important to note here that increasing image width much further leads to 

total loss of contrast making measurements impossible. However on the surfaces that 

give good results that limit is higher than 100% width/length, which is impractical 

anyway. Below that the simulations show that the errors are not dependent on image 

width, provided that sufficient overlap is ensured.  

a)      b) 



Optical velocity measurement 

 

70 

 

4.6 Evaluation, enhancements, practicalities 

Sensor placement: according to the calculations in section 4.3.2 at least three one 

dimensional sensors placed at separate locations are necessary to obtain movement 

information independent from platform kinematics. This is no surprise as two 

dimensional ground movement has three degrees of freedom. In some cases it is 

possible to use only two sensors and calculate the missing degree of freedom from 

platform kinematics. This is relevant for non-holonomic platforms such as differential 

or Ackermann drive. For these platforms the best placement is right next to the driven, 

or the steered wheels. The proposed sensor placement is illustrated on Figure 70. For 

holonomic platforms three sensors are necessary and they have to be placed, so that 

there is no singular configuration. 

 

Figure 70. Suggested sensor placements for different drive configurations – red line 

represents sensor 

When the third degree of freedom is calculated from kinematics a great advantage of the 

sensor is given up, when the platform skids – moves perpendicular to wheel rotation the 

movement is measured inaccurately or not at all. 

For Ackermann drive vehicles the use of the sensor is not limited to velocity 

measurement, a useful application could be the measurement of sideslip angle [BKS06]. 

In this case a single sensor can be mounted at a wheel of interest, parallel to the wheel’s 

axis of rotation, the sideslip angle can be determined as a function of longitudinal and 

sideways velocity of the wheel:          (
  

|  |
) where    is the forward,    is the 

sideways velocity of the wheel. 

Environmental effects: as all optical sensors, this sensor is sensitive to dirt. A good 

way to get rid of it is to use a special coating for the optics, or use some mechanical way 

of removal, such as high frequency vibration, or blowing air away from the sensor as it 

is common with industrial sensors. None of these solutions are cheap and/or perfect, this 

remains a disadvantage, and has to be considered for the application. In a controlled 

environment such as a warehouse, or a racetrack, an occasional cleaning should be 

sufficient. 

Water poses another problem, when it does not splash on the optics, it still acts as a 

mirror and introduces errors with its movements. Some of these problems may be 

helped by special lighting, however this is also a disadvantage to consider. 

Lighting: since the sensor is an optical one, lighting plays an important role. If the 

sensor is mounted under a vehicle chassis it can be fairly independent from external 

light. Since the practical image sensor to use is a tall pixel line scan-camera, the amount 

of light needed does not need to be much compared to a matrix camera as a tall pixel’s 

relatively large area ensures high sensitivity, the integration of the cylindrical lens has a 

similar effect. The issue of lighting however is something that the simulator is not 

designed to test. 
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From the simulations I concluded that for pixel accurate operation in the perpendicular 

direction, an overlap of 60% is needed. However this value can be lowered by the help 

of filters and intelligent processing. 

Enhancements: I noticed that when approaching the limits of reliable operation (less 

and less overlap) point errors start to appear in the course of consecutive measurements, 

i.e. a large error appears for a single image pair. As we increase speed, these errors 

become more frequent and start to grow in area – several consecutive measurements are 

bad. This can be helped by the use of median filtering, by taking   consecutive 

measurements and taking the average of their median filtered values the correct value 

can be obtained. That is of course when there are not too many errors, in which case this 

method cannot help. By substituting each   measurement with the average of their 

median filtered values the data rate of the sensor is divided by  . Since the frame rate 

can be quite high – the order of     Hz – using for example      would yield 

measurement data rates at the order of kHz, which is acceptable. Figure 71. 

demonstrates the effect of median filtering on the walking tile pattern, taken from the 

sidewalk in front of building I of the University. The figure on the left shows averages 

of twenty consecutive measurements and the right shows the same with median 

filtering. 

 

Figure 71. Raw and filtered data for the “walking tile” ground, median filtering effectively 

removes point errors 

This method emphasizes the sensors sudden degradation behavior, it can be noted that 

especially after applying the filter, the sensor is either pixel correct or several pixels off. 

Other than filtering methods, apriori information can be used. For instance we know 

that the value of acceleration is limited, so the velocity “does not change much” 

between two measurements. This information can be used to create a weighing function 

for the distance measure, that gives higher values for distances that are “far” from the 

previous measurement value, thus favoring small changes in velocity between samples. 

This method can both speed up the measurements and decrease errors.  

Real time algorithm implementation: for the sensor to work as intended real time 

processing is needed, taking for example a 2500 fps image sensor this means that there 

is 400  s between images. The algorithm used in the simulator (section 4.4) lends itself 

naturally for FPGA based processing, because the distance metric values between 

consecutive images can be computed for each shifted image, in a parallel manner. 

Lindoso [32] presents an application where similar calculations for fingerprint matching 

on 50x50 images are executed in a comparable amount of time on a Xilinx Virtex 4-SX. 

Bilal et al [4] proposes enhancements of an FPGA implemented correlation algorithm to 

speed up processing and use hardware resources more efficiently. I think it is safe to say 

that an algorithm, similar in function to the one I used in the simulation, can be 
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implemented in real time, with contemporary FPGA hardware, without making a 

compromise in speed. 

Optics: a telecentric lens has proven to be a good solution for ground distance related 

problems [TK07]. If the use of cylindrical lens can be avoided and a suitable tall pixel 

image sensor is used, off the shelf lens can be applied. The largest diameter of a 

telecentric lens has to be the same size as the largest dimension of the rectangular field 

of view on the ground, therefore price depends heavily on the field of view. 

4.6.1 Applications, future prospects 

The concept of the sensor won a Hungarian state grant – Irinyi János – in 2005. This 

made it possible to create the first proof of concept prototype, made with a mouse chip. 

This sensor proved the usability of telecentric optics and the experience gained 

catalyzed the creation of a compact odometry sensor subsystem for mobile robots that 

was used in MSc theses and robotic competitions in the 3DMR lab. Figure 72. shows 

the first prototype (left) the wooden housing holds the telecentric lens and the 

electronics. It is mounted on an oscilloscope trolley, to make it mobile.  

 

Figure 72. First prototype and application on a hovercraft 

The hovercraft (Figure 72. right) was made by an MSc student (Gábor Baracsi) under 

my guidance as a master’s thesis project. For this project he used the sensor as a 

building block, simply integrating it with his own work, leveraging my and another 

MSc student’s previous work. I started experiments with the line scan camera sensor, 

connecting an imaging sensor with a PC. I also created plans according to the 

simulation results described in section 4.5. Unfortunately I did not win the second part 

of the Irinyi János grant and the realization of a line-scan prototype was put on hold due 

to insufficient funds. 

At the writing of this thesis several wide pixel sensors were available at reasonable 

prices for example LIS-770i from Panavision Imaging (available from 2011) and S3901 

from Hamamatsu
13

 (available from 2010) both feature wide pixels and high frequency 

readout. Table 3. summarizes their most important features: 

  

                                                 
13

 http://www.panavisionimaging.com, http://jp.hamamatsu.com/products 
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Sensor LIS-770i S3901 

Image size (max) 312.5 x 6006µm 
(selectable in 5 steps) 

2.5 x 6.4 mm 

shape factor 5% 39% 

resolution 335 or 770 px 128 

frame rate 2985 or 1300 fps 15600 fps 

pixel clock 1 MHz 2 MHz 

Table 3. Comparison of the main features of two linear image sensors as an example  

Both these sensors are considered wide pixel, the S3901 is extremely wide. I cited these 

image sensors to demonstrate the capabilities of my speed sensor with off the shelf 

components i.e. no special integrating optics with cylindrical lens, the only integrating 

effect is achieved by the image sensor itself. Table 4. summarizes the achievable speed 

sensor parameters with the two detectors. Field of view length is assumed to be 50mm. 

For the LIS-770i resolution is assumed to be the smaller value, 335px to have a better 

line rate value. It has to be noted that the S3901 is a lot more expensive than the LIS-

770i. 

 

Parameters LIS-770i S3901 

field of view length 50 mm 50 mm 

field of view width 2.5 mm 19.5 mm 

line rate 2985 fps 15600 fps 

resolution 335 px 128 px 

area projected on a pixel 0.15 x 2.5 mm 0.39 x 19.5 mm 

max speed - 
assuming 60% overlap, sideways 

movement 

3 m/s 120 m/s 

Table 4. Projected speed sensor parameters with the example image sensors 

From the data it is clear that a sensor with excellent qualities can be assembled from off 

the shelf components. 

4.7 Conclusion 

Thesis III: Accurate, high velocity contactless displacement measurement 

can be realized using a sensor system based on a line scan camera; by 
choosing appropriate system parameters, accurate one dimensional 
measurements can be made during arbitrary two dimensional motions. 

The experiments conducted with the simulator show that using a line-scan camera for 

optical speed measurements is a viable idea. Practical parameter choices have lead to 

exact displacement calculations for most of the investigated textures, in the presence of 

simulated noise. I gave examples of commercially available off the shelf components, 

that enable high speed measurements, exceeding the range required for most land 

vehicles. 

 

Related publications: 

 

[BKS06], [KT07], [TK07], [KT08], [TK08], [TKV08] 
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5 Conclusion 

My research work summarized in this dissertation addresses a special segment of 

mobile robotics and industrial logistics. Due to their exceptional maneuvering 

capabilities, – independent movement in three degrees of freedom – omnidirectional 

vehicles are used for a great variety of tasks. They are very popular among hobbyists, 

specialized competitions are organized for them each year, they even have their own 

soccer league. Also there are several industrial applications that leverage the advantages 

stemming from the fact that they do not need to run time consuming y or k turns in the 

corridors of warehouses; they can save time and headaches by efficiently maneuvering 

into the most awkward spaces, changing their orientation on the go. The scientific 

community has also been interested in these platforms for a long time, due their 

complex mechanical design and unique control needs. 

In this section I give a short summary of my contributions to this field. 

During my work with omnidirectional platforms I found that even though these 

machines have been invented a long time ago, due to their somewhat limited niche 

applications, their design and control methodology is not as well worked out, as for 

conventional vehicles. However there is a great wealth of models, tools and 

methodologies that can be borrowed from conventional vehicle technology. Modern 

engineering increasingly uses simulation, to gain insight into the inner workings of 

systems and save precious time and resources, by not having to build absolutely 

untested prototypes of a new product. Arguably the most important component of a 

vehicle simulation is the wheel model, since that is the part that defines the contact with 

the environment and generates the forces and torques that make the vehicle move. Tire 

simulation for regular wheels is a mature, well researched domain with useful results. 

An omnidirectional wheel is by no means the same as a regular tire, however many 

aspects are very similar, such as the calculation of the contact point, and many aspects 

of the force generation characteristics. Tire materials, such as rubber are similar and 

exhibit the same friction characteristics. Considering all this, it is a straightforward idea 

to adapt already existing tire models from the automotive vehicle simulation domain 

and create an universally applicable omnidirectional wheel model, to facilitate research 

and simulation of omnidirectional platforms. 

I created a method for modifying regular tire model force generation characteristics to 

behave like an omnidirectional wheel with a given   roller angle and material 

characteristics. The modification transforms wheel dynamical variables such as slip and 

tire deformation in the active – parallel to roller axis – direction of the wheel. It 

calculates with zero force in the perpendicular direction. Alternatively forces due to 

bearing friction and inertia can be added. The procedure is demonstrated in chapter 2. 

by modification of the widely used Rill model, which was chosen for its easy parameter 

modification characteristics. For the verification of the model, I chose to work with a 

simulator based on the Modelica language. Modelica is an open source, object oriented, 

declarative programming language, created especially for the modeling of complex 

physical systems. Together with the Dymola environment of DAssault Systemes the 

simulation system includes a powerful GUI and animation capabilities for easy, 

qualitative model verification. 

Modern physical simulation software packages usually include libraries of components 

related to a certain engineering discipline; this is also true for Dymola. The Academic 

Bundle of version 7.4 includes a vehicle simulation library, with several different tire 

models, for example: linear, Rill, Bakker, Pacejka. For empirical validation of my tire 
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model I created two different platform models, a simple industrial forklift with       
roller angles and four wheels – commonly known as a Mecanum platform – and a three 

wheeled robot with     , a popular choice for robot soccer competitions. I derived 

the inverse kinematic equations governing their movement, using related literature, and 

created a drive unit in the simulator that moved these platforms according to the 

equations. The results were satisfactory, by supplying platform linear and angular 

velocity vectors, as input to the simulation, I was able to move both platforms according 

to expectations, in a qualitatively correct manner. As a simplification I neglected the 

effect of contact point variation caused by the change of rollers touching the ground, 

and I also neglected the effect of bearing friction, rolling resistance and roller inertia in 

the passive direction of the wheel. 

Building on my results with omnidirectional wheel simulation, I started to work on 

another problem, related to the behavior of omnidirectional platforms during heavy 

braking. These wheels allow true omnidirectional movement, by only generating 

substantial force in the active direction of the wheel, as opposed to regular wheels that 

are usually quite hard to move in the lateral direction. This property results in unwanted 

swerving behavior when braking. Wheel forces depend strongly on wheel vertical load 

and local ground characteristics, causing substantial differences in the friction force 

generated at the wheel contacts. The lack of sideways force lets the vehicle lose its 

original orientation and turn around the strongest – most loaded wheel – possibly 

causing accidents and at the least, serious operator concern. The problem of keeping 

vehicle orientation while braking is a difficult one, due to 1ack of exact knowledge of 

load distribution, and wheel parameters, consequently the magnitude of friction force. In 

chapter 3. I present the dynamic equations governing platform movement. For the 

control of parameter, or model uncertain nonlinear systems the literature suggests the 

use of sliding mode control. I created a general switching surface for omnidirectional 

wheels, that is based on the simple approach of turning the brakes off for a given wheel 

when brake force of that wheel increases unwanted velocity components. Otherwise the 

brake is applied with the maximum force set by the driver. Stability of the feedback 

loop is guaranteed by the passivity of the system. Correct operation under various wheel 

and platform parameters, is verified by simulation in the Modelica – Dymola 

environment. The most important property of the control law is that it is highly 

independent from platform dynamic characteristics, as it only builds on the kinematics 

of a given platform. 

The proposed control algorithm relies on accurate measurement of the linear and 

angular velocity of the vehicle. Omnidirectional wheels generally operate with higher 

amounts of slip, heavy braking in general also causes wheel slippage, therefore it is 

important to have a feedback method independent from wheel rotation. For this task I 

propose an optical feedback method, similar in principle to the well known optical 

mouse, that uses correlation to compare ground texture intensities to measure 

displacement. My method however uses a line scan camera to achieve greater speed and 

resolution, using less computational resource than a matrix camera of similar parameters 

would require. A line scan camera however can only measure displacement in one 

dimension, therefore movements at an angle to its main axis may cause serious 

measurement errors. To solve this problem I proposed the use of cylindrical lens, or tall 

pixel cameras to achieve an optical integrating effect. I created a simulation in Matlab 

and showed that error free operation can be achieved on a wide range of textures by 

insuring sufficient overlap between sampled images. My results show that accurate one 

dimensional measurements can be made with a line sensor, while moving freely along 
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the surface. The proposed sensor system is capable of measuring two dimensional 

movements of land vehicles up to the range of 100m/s with high accuracy. 
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Appendix 

A. Details of the omnidirectional platform simulation 

In the following I give some more details on how I created the simulation. The 

following images were exported from the Modelica-Dymola simulation environment. 

This simulation environment works on two levels, many models can be built up just by 

using the first level, using elements from the library, dragging building blocks on the 

drawing board. The second level is the textual representation, which is automatically 

generated from the graphical one, but it can be edited by the user adding functionality 

and modifications, by writing equations. That is of course not visible on these 

screenshots, I simply include them to give an overview to the interested reader. 

Figure A shows the Mecanum forklift high level model. The object body represents the 

platform mass and inertia, it can be moved in relation to the chassis with cabinPos a 

fixed 3D translation. load is the cargo, its relative position is set by forkPos it can be 

lifted up, or lowered by driving the position signal through the s_ref input. The 

world component in the lower left corner represents the global coordinate system and 

defines the direction of gravity. 

 

 

A. The Mecanum forklift model from the simulator 

Figure B. shows the internals of the chassis module from Figure A., the position of the 

four wheels is determined relative to the central frame, the wheels are driven from the 

controlBus from where they receive angular velocity, brake and brake assist signals, 

also the friction coefficient can be changed for any wheel independently. This is useful 
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for the “ice patch” experiments. Platform state variables are measured by the 

absoluteSensor module and fed to the signalBus of the vehicle. The tyreData table 

holds wheel parameters, so that they are the same for all wheels. 

 

B. Mecanum chassis internals 

 Figure C. shows the omnidirectional wheel and its actuators. The attachment point is 

frame_a, which is connected to the wheel hub. The wheel body is driven by the speed 

angular velocity signal, through a clutch and a brake. These modules are simulations 

of a hydraulic clutch and disc brake, used in the vehicle library of the simulation 

package. I designed the system so that above a predefined signal magnitude on the 

brake_force input, the clutch automatically disengages, and the wheel can be slowed 

by the brake. This was necessary because speeder is an exact module, it drives its 

output flange according to the value on its input, therefore it cannot be slowed. In a real 

system the drive train would be realized with an appropriate electric motor and brake 

system, in the simulation I decided to make it simpler as modeling this part was out of 

the scope of my research, at the writing of this thesis. The brake_assist (lowest input 

on the left) can modulate the brake by adding or subtracting from the force pressing the 

brake pads to the disc, trough the add module. The input mue_ext can be driven by any 

real valued function for the friction coefficient, I use a function of the global position of 

the wheel frame to define areas of different friction characteristics. mecaWheel is the 

omnidirectional wheel. fixedArrow is an arrow that shows in the animation for 

debugging purposes. 
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C. The drivetrain of a wheel 

Figure D. is the representation of the tire model, that is included in the vehicle library 

most of the functionality is in the text level of the model. This is the part that I modified 

to behave like an omnidirectional wheel. 

 

D. Wheel model 

For the sake of completeness I present the model of the three-wheeled robot on Figure 

E. The concept is very similar to that of the Mecanum forklift, the base of the robot is 

the omnidirectional chassis, to which a body is attached, represented by a mass with 
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inertia. The platform is driven by a control box, and a brake assistant is attached to it. 

Figure F. shows the three-wheeled chassis, again the concept is very similar to the 

previous model. On this figure the friction coefficient generators are visible as small 

blue circles connected to each wheel. The wheels themselves are similar to the 

Mecanum wheels, the important difference is that their force generation is different, 

because their “rollers” are set at   . 

 

E. The three-wheeled platform model 
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F. Internals of the three-wheeled chassis 
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